Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.1/2283
Título: Genetic programming and bacterial algorithm for neural networks and fuzzy systems design
Autor: Cabrita, Cristiano Lourenço
Botzheim, J.
Ruano, A. E.
Kóczy, László T.
Palavras-chave: Constructive algorithms
B-splines
Genetic programming
Fuzzy rule base
Bacterial evolutionary algorithm
Data: 2003
Citação: Cabrita, C.; Botzheim, J.; Ruano, A. E.; Koczy, L.T. Genetic programming and bacterial algorithm for neural networks and fuzzy systems design, Trabalho apresentado em IFAC Int. Conference on Intelligent Control Systems and Signal Processing (ICONS 2003), In IFAC Int. Conference on Intelligent Control Systems and Signal Processing (ICONS 2003), Faro, 2003.
Resumo: In the field of control systems it is common to use techniques based on model adaptation to carry out control for plants for which mathematical analysis may be intricate. Increasing interest in biologically inspired learning algorithms for control techniques such as Artificial Neural Networks and Fuzzy Systems is in progress. In this line, this paper gives a perspective on the quality of results given by two different biologically connected learning algorithms for the design of B-spline neural networks (BNN) and fuzzy systems (FS). One approach used is the Genetic Programming (GP) for BNN design and the other is the Bacterial Evolutionary Algorithm (BEA) applied for fuzzy rule extraction. Also, the facility to incorporate a multi-objective approach to the GP algorithm is outlined, enabling the designer to obtain models more adequate for their intended use.
Peer review: yes
URI: http://hdl.handle.net/10400.1/2283
Aparece nas colecções:FCT2-Artigos (em revistas ou actas indexadas)

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
cabrita 2003.pdf116,68 kBAdobe PDFVer/Abrir    Acesso Restrito. Solicitar cópia ao autor!


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.