Butler, MaireadPerperidis, AntoniosZahra, Jean-Luc MatteoSilva, NadiaAverkiou, MichalakisDuncan, W. ColinMcNeilly, AlanSboros, Vassilis2020-08-042020-08-042019http://hdl.handle.net/10400.1/14598Ultrasound contrast imaging has been used to assess tumour growth and regression by assessing the flow through the macro- and micro-vasculature. Our aim was to differentiate the blood kinetics of vessels such as veins, arteries and microvasculature within the limits of the spatial resolution of contrast-enhanced ultrasound imaging. The highly vascularised ovine ovary was used as a biological model. Perfusion of the ovary with SonoVue was recorded with a Philips iU22 scanner in contrast imaging mode. One ewe was treated with prostaglandin to induce vascular regression. Time-intensity curves (TIC) for different regions of interest were obtained, a lognormal model was fitted and flow parameters calculated. Parametric maps of the whole imaging plane were generated for 2 × 2 pixel regions of interest. Further analysis of TICs from selected locations helped specify parameters associated with differentiation into four categories of vessels (arteries, veins, medium-sized vessels and micro-vessels). Time-dependent parameters were associated with large veins, whereas intensity-dependent parameters were associated with large arteries. Further development may enable automation of the technique as an efficient way of monitoring vessel distributions in a clinical setting using currently available scanners.engAnimalsContrast mediaFemaleIn vitro techniquesOvaryPhospholipidsReproducibility of resultsSheepSulfur HexafluorideUltrasonographyDopplerDifferentiation of vascular characteristics using contrast-enhanced ultrasound imagingjournal article10.1016/j.ultrasmedbio.2019.05.015