Mackaay, MarcoMazorchuk, VolodymyrMiemietz, VanessaTubbenhauer, Daniel2021-02-172021-02-172018-04-240016-2736http://hdl.handle.net/10400.1/15113The quantum Satake correspondence relates dihedral Soergel bimodules to the semisimple quotient of the quantum sl(2) representation category. It also establishes a precise relation between the simple transitive 2-representations of both monoidal cate-gories, which are indexed by bicolored ADE Dynldn diagrams. Using the quantum Satake correspondence between affine A(2) Soergel bimodules and the semisimple quotient of the quantum sl(3)representation category, we introduce trihedral Hecke algebras and Soergel bimodules, generalizing dihedral Hecke algebras and Soergel bimodules. These have their own Kazhdan-Lusztig combinatorics, simple transitive 2-representations corresponding to tricolored generalized ADE Dynkin diagrams.eng2-representation theoryEcke algebrasSoergel bimodulesZigzag algebrasQuantum groups and their fusion categoriesTrihedral Soergel bimodulesjournal article10.4064/fm566-3-2019