Repository logo
 
Loading...
Profile Picture
Person

Guerreiro Pereira, Catarina Alexandra

Search Results

Now showing 1 - 10 of 52
  • Sea knotgrass (Polygonum maritimum L.) as a potential source of innovative industrial products for skincare applications
    Publication . Rodrigues, Maria Joao; Matkowski, Adam; Slusarczyk, Sylwester; Magne, Christian; Poleze, Thatyana; Pereira, Catarina Guerreiro; L, Custódio
    Several Polygonum species and related genera display diverse skincare properties and were considered as active cosmetic ingredients. Thus, this work explored the halophyte sea knotgrass (Polygonum maritimum L.) as source of phenolics and flavonoids-enriched extracts with skincare properties, for the cosmetic industry. To improve the content in these compounds, different extraction solvents and methodologies were used, and the resulting extracts were tested for total contents of phenolics (TPC) and flavonoids (TFC). The acetone extract made on an ultrasound bath for 30 min had the highest TPC (275 mg of gallic acid equivalents [GAE]/g of dry weight [DW]), TFC (48.0 mg of rutin equivalents [RE]/g DW), and yield (20.3%). This extract was selected and evaluated for its in vitro antioxidant (total antioxidant, superoxide radical-scavenging and lipid peroxidation), anti-inflammatory (nitric oxide [NO] reduction on lipopolysaccharide [LPS]-stimulated RAW 264.7 macrophages), anti-wrinkles (elastase), anti-acne (lipase), antimicrobial (Escherichia colt Staphylococcus aureus, Pseudomonas aeruginosa, Candida cdbicctris), anti-melanogenic (anti-tyrosinase and reduction of melanin production on B16 4A5 melanoma cells). The extract was also appraised for toxicity, and its chemical profile was determined by ultra-high-resolution mass spectrometry (UHRMS). The acetone extract showed a high O-2(-center dot) scavenging (half maximal inhibitory concentration [IC50] = 40.4 mu g/mL), total antioxidant capacity (TAC
  • A comparative study of the in vitro enzyme inhibitory and antioxidant activities of Butea monosperma (Lam.) Taub. and Sesbania grandiflora (L.) Poiret from Pakistan: New sources of natural products for public health problems
    Publication . Baessa, M.; Rodrigues, Maria João; Pereira, Catarina; Santos, T.; Neng, N. da Rosa; Nogueira, J. M. F.; Barreira, Luísa; Varela, J.; Ahmed, H.; Asif, S.; Boukhari, S. A.; Kayani, W. K.; Ahmad, Khawaja Shafique; Zengin, G.; Mollica, A.; Custódio, Luísa
    Infusions, decoctions and tinctures were prepared from flowers of Butea monosperma (Lam.) Taub. and Sesbania grandiflora (L.) Poiret and evaluated for in vitro inhibition of enzymes implicated on the onset of neurological diseases (acetylcholinesterase: AChE and butyrylcholinesterase: BuChE), diabetes (alpha-glucosidase and alpha-amylase), obesity (lipase) and skin hyperpigmentation (tyrosinase). Extracts were also appraised for radical scavenging activity (RSA) on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals, and for metal chelating activity on copper and iron ions. Samples were evaluated for their total contents in different phenolics groups by spectrophotometric methods, for phenolic profile by high performance liquid chromatography e diode array detection (HPLC-DAD) and for mineral contents by microwave plasma-atomic emission spectrometry (MP-AE). Regarding B. monosperma, the tincture allowed for a moderate inhibition of AChE, the decoction was able to inhibit alpha-glucosidase and no activity was observed towards BuChE, alpha-amylase or lipase. All extracts had a low or moderate inhibition towards tyrosinase, and significant RSA and metal chelating potential. As for S. grandiflora, only the decoction inhibited AChE, none of the extracts was able to inhibit BuChE, all samples inhibited alpha-glucosidase and infusions and decoctions had similar inhibitory properties towards alpha-amylase. None of the extracts was active against lipase, but all were able to inhibit tyrosinase. Extracts had also significant RSA, moderate copper chelation and decoctions had the capacity to chelate iron. The most abundant macroelements in both species were potassium and calcium, while iron was the prevalent microelement, especially in B. monosperma. Both species had significant levels of phenolic compounds, and the main components in decoctions and infusions of B. monosperma were syringic and salicylic acids, while the major compound identified in tinctures was the flavonoid luteolin-7-O-glucoside. In S. grandiflora the most abundant were chlorogenic and neochlorogenic acids and catechin hydrate. Molecular docking studies on the most abundant molecules in S. grandiflora, (+)-catechin, chlorogenic acid and neochlorogenic acid, indicate that these compounds are able to dock to alpha-glucosidase in a similar manner than acarbose. Our results suggest that flowers of both species are a promising source of high value-added compounds with enzyme inhibitory and antioxidant properties. (c) 2018 SAAB. Published by Elsevier B.V. All rights reserved.
  • In vitro enzyme inhibitory and anti-oxidant properties, cytotoxicity and chemical composition of the halophyte Malcolmia littorea (L.) R.Br. (Brassicaceae)
    Publication . Castañeda-Loaiza, Viana; Placines, Chloé; Rodrigues, Maria Joao; Pereira, Catarina; Zengin, Gokhan; Neng, Nuno R.; Nogueira, José M. F.; Custódio, Luísa
    This work reports for the first time the in vitro anti-oxidant (towards DPPH, ABTS, copper and iron), enzymatic inhibitory (on AChE, BuChE, α-glucosidase, α-amylase and tyrosinase), cytotoxicity (towards HepG2 and HEK 293 cells), and metabolomics (by HPLC-MS) of extracts from organs of Malcolmia littorea (L.) R.Br. Extracts were constituted mainly by phenolic acids and flavonoids, and main compounds were salicylic acid and luteolin-7-O-glucoside. Samples showed reduced radical scavenging and metal chelating capacity, and only the methanol extracts reduced iron. The root's ethanol and methanol extracts, and the aerial organ's ethanol extract exhibited the highest AChE inhibition. The root's ethanol extract displayed dual anti-cholinesterase activity. Samples showed a low capacity to inhibit α-amylase, but a high α-glucosidase inhibition was obtained with the root's and flower's ethanol extracts, and flower's methanol extract. Overall, samples displayed a high inhibition against tyrosinase, reduced HepG2 cellular viability and were less toxic towards HEK 293 cells.
  • Differential protein expression in mussels Mytilus galloprovincialis exposed to nano and ionic Ag
    Publication . Gomes, Tânia; G. Pereira, Catarina; Cardoso, Cátia; Bebianno, Maria João
    Ag NPs are one of the most commonly used NPs in nanotechnology whose environmental impacts are to date unknown and the information about bioavailability, mechanisms of biological uptake and toxic implications in organisms is scarce. So, the main objective of this study was to investigate differences in protein expression profiles in gills and digestive gland of mussels Mytilus galloprovincialis exposed to Ag NPs and Ag(+) (10 μg L(-1)) for a period of 15 days. Protein expression profiles of exposed gills and digestive glands were compared to those of control mussels using two-dimensional electrophoresis to discriminate differentially expressed proteins. Different patterns of protein expression were obtained for exposed mussels, dependent not only on the different redox requirements of each tissue but also to the Ag form used. Unique sets of differentially expressed proteins were affected by each silver form in addition to proteins that were affected by both Ag NPs and Ag(+). Fifteen of these proteins were subsequently identified by MALDI-TOF-TOF and database search. Ag NPs affected similar cellular pathways as Ag(+), with common response mechanisms in cytoskeleton and cell structure (catchin, myosin heavy chain), stress response (heat shock protein 70), oxidative stress (glutathione s-transferase), transcriptional regulation (nuclear receptor subfamily 1G), adhesion and mobility (precollagen-P) and energy metabolism (ATP synthase F0 subunit 6 and NADH dehydrogenase subunit 2). Exposure to Ag NPs altered the expression of two proteins associated with stress response (major vault protein and ras partial) and one protein involved in cytoskeleton and cell structure (paramyosin), while exposure to Ag(+) had a strong influence in one protein related to stress response (putative c1q domain containing protein) and two proteins involved in cytoskeleton and cell structure (actin and α-tubulin). Protein identification showed that Ag NPs toxicity is mediated by oxidative stress-induced cell signalling cascades (including mitochondria and nucleus) that can lead to cell death. This toxicity represents the cumulative effect of Ag(+) released from the particles and other properties as particle size and surface reactivity. This study helped to unravel the molecular mechanisms that can be associated with Ag NPs toxicity; nevertheless, some additional studies are required to investigate the exact interaction between these NPs and cellular components.
  • Nutritional and phyto-therapeutic value of the Halophyte Cladium mariscus L. (Pohl.): a special focus on seeds
    Publication . Rodrigues, Maria João; L, Custódio; Mecha, Débora; Zengin, Gokhan; Cziáky, Zoltán; Sotkó, Gyula; Pereira, Catarina Guerreiro
    This work searched for the phyto-therapeutic potential and nutritional value of seeds from the halophyte Cladium mariscus L. (Pohl.), aiming at its use as a source of bioactive ingredients for the food industry. Hence, the nutritional profile, including minerals, of seeds biomass was determined; food-grade samples were prepared, and their phytochemical fingerprinting assessed. Extracts were evaluated for in vitro antioxidant potential, inhibitory capacity towards enzymes related to neuroprotection, diabetes, and hyperpigmentation, and anti-inflammatory properties, along with a toxicological assessment. Sawgrass seeds can be considered a proper nutritional source with a good supply of minerals. All extracts had a high level of total phenolics (65.3–394.4 mg GAE/g DW) and showed a chemically rich and diverse profile of metabolites that have several biological properties described (e.g., antioxidant, anti-inflammatory). Extracts had no significant toxicity (cell viabilities > 80%) and were overall strong antioxidants (particularly at radical scavenging and reducing iron), effective tyrosinase inhibitors (55–71 mg KAE/g DW), showed anti-inflammatory properties (30–60% NO decrease), and had moderate capacity to inhibit enzymes related to neuroprotection (AChE 3.7–4.2, BChE 4.3–6.0 mg GALE/g DW) and diabetes (α-glucosidase 1.0–1.1, α-amylase 0.8–1.1 mmol ACAE/g). Altogether, results suggest that sawgrass seeds have the potential to be exploited as a new food product and are a reservoir of bioactive molecules with prospective applications as ingredients for value-added, functional, and/or preservative food products
  • Chemical profile, antioxidant, antimicrobial, enzyme inhibitory, and cytotoxicity of seven Apiaceae species from Turkey: a comparative study
    Publication . Zengin, Gokhan; Sinan, Kouadio Ibrahime; Ak, Gunes; Mahomoodally, Mohamad Fawzi; Paksoy, Mehmet Yavuz; Picot-Allain, Carene; Glamocilja, Jasmina; Sokovic, Marina; Jeko, Jozsef; Cziaky, Zoltan; Rodrigues, Maria Joao; Pereira, Catarina; Custódio, Luísa
    Several Apiaceae species, used as both food and in complementary and alternative medicine, represents a rich source of potential valuable phytopharmaceuticals which necessitates scientific contemplation. In the present study, the antioxidant, enzyme inhibitory, antimicrobial, and cytotoxic properties of methanol extracts of seven Apiaceae species, (Chaerophyllum macrospermum (Willd. ex Spreng.) Fisch. & C.A.Mey. ex Hohen, Ferula rigidula Fisch. ex DC., Ferula orientalis L., Prangos ferulacea Lindl., Prangos peucedanifolia Fenzl., Ferulago setifolia K. Koch, and Pimpinella anthriscoides Boiss.) were evaluated. Species belonging to the Prangos genus exhibited the highest total phenolic content, namely P. peucedanifolia and P. ferulacea, with values of 47.90 and 44.44 mg gallic acid equivalent/g extract, respectively. P. peucedanifolia also displayed the highest radical scavenging capacity (81.53 and 102.70 mg Trolox equivalent [TE]/g extract for 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS), respectively) and reducing power (165.87 and 100.09 mg TE/g extract for cupric reducing antioxidant capacity (CUPRAC) and ferric reducing antioxidant power (FRAP), respectively). C. macrospermum showed the most potent inhibition against Alzheimer's disease related enzymes, namely acetylcholinesterase (4.53 mg galantamine equivalent [GALAE]/g extract) and butyrylcholinesterase (3.22 mg GALAE/g extract). P. ferulacea (131.94 mg kojic acid (KAE) equivalent/g extract) and P. peucedanifolia (4.97 mmol acarbose equivalent (ACAE)/g extract) were potent inhibitors of tyrosinase and a-glucosidase, respectively. In general, studied species were able to reduce cellular viabilities. P. peucedanifolia possessed promising antibacterial potential against Bacillus cereus (Minimum inhibition concentration (MIC): 0.37 mg/mL), L. monocytogenes (MIC: 0.56 mg/mL), P. aeruginosa and Escherichia coli (MIC: 0.27 mg/mL), Salmonella typhimurium and Enterobacter cloacae (MIC: 0.75 mg/mL). F. rigidula showed the highest antifungal effect against Aspergillus ochraceus and Trichoderma viride (MIC: 0.10 mg/mL). The present findings could be the scientific starting point towards the pharmaceutical and/or commercial utilization of these Apiaceae species.
  • A multibiomarker approach in the clam Ruditapes decussatus to assess the impact of pollution in the Ria Formosa lagoon, South Coast of Portugal
    Publication . Cravo, Alexandra; Pereira, C.; Gomes, Tânia; Cardoso, Cátia; Serafim, M.A.; Almeida, Cheila; Rocha, T.; Lopes, Belisandra; Company, Rui; Medeiros, A.; Norberto, R.; Pereira, R.; Araújo, O.; Bebianno, Maria João
    The Ria Formosa lagoon is an ecosystem whose water quality reflects the anthropogenic influence upon the surrounding areas. In this lagoon, the clam Ruditapes decussatus has a great economical importance and has been widely used as a biomonitor. A multibiomarker approach (d-aminolevulinic acid dehy- dratase, metallothionein, lipid peroxidation, acetylcholinesterase, alkali-labile phosphates, DNA damage) was applied to assess the environmental quality of this ecosystem and the accumulation of contaminants and their potential adverse effects on clams. Clams were sampled in different shellfish beds in the period between July 2007 and December 2008 and abiotic parameters (temperature, salinity, pH and dissolved oxygen of seawater and organic matter in the sediment), condition index, metals (Cd, Cu, Zn, Ni, Pb), TBTs and PAHs concentrations were measured in clam tissues. Data was integrated using Principal Component Analyses and biomarker indices: IBR (Integrated Biomarker Response) and HSI (Health Status Index). This multibiomarker approach enabled discrimination of a time and space trend between sites with different degrees of anthropogenic contamination, identifying one of them (site 2) as the most stressful and summer months as the most critical period for clams due to an increase of environmental stress (anthropogenic pressure along with extreme environmental conditions, e.g. temperature, dissolved oxygen, organic matter in the sediments, etc). The selected biomarkers provided an integrated response to assess the environmental quality of the system, proving to be a useful approach when complex mixtures of contaminants occur.
  • The irrigation salinity and harvesting affect the growth, chemical profile and biological activities of Polygonum maritimum L.
    Publication . Rodrigues, Maria Joao; Monteiro, Ivo; Placines, Chloé; Castañeda-Loaiza, Viana; Slusarczyk, Sylwester; Matkowski, Adam; Pereira, Catarina; Pousao-Ferreira, Pedro; Custódio, Luísa
    Previously, our group identified the halophyte Polygonum maritimum L. (sea knotgrass) as a promising source of ingredients for the cosmetic, food, pharmaceutical and veterinarian industries. To further explore this species, and to guarantee the supply of biomass for commercial purposes, it is necessary to ensure its sustainable production while assuring the preservation of its chemical and biological properties. In this context, this work aimed to cultivate this species in greenhouse conditions and to determine the influence of specific agronomic conditions, namely irrigation salinity and harvest, on the plant's growth performance and biological properties of obtained biomass. For that purpose, plants were grown in a greenhouse and irrigated with water with different salinities (0, 100, 200, 300 and 600 mM of sodium chloride - NaCl). After six weeks of irrigation, plants were cut 7 cm above soil level and submitted to an additional two harvests with a six-week interval. Plant growth performance was evaluated in terms of plant height, leaf number and surface area, moisture, and productivity. Acetone extracts were prepared from aboveground organs and evaluated for chemical composition (by spectrophotometric methods, and by ultra-high-resolution mass spectrometry - UHRMS), and for in vitro antioxidant properties [radical-scavenging activity (RSA) on DPPH and ABTS, ferric reducing antioxidant power (FRAP) and metal chelating activity on iron (ICA) and copper (CCA)]. Extracts were also appraised for in vitro anti-inflammatory activity on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Increased salinity and multiple harvests reduced plant growth and yields; the highest productivity was obtained in plants irrigated with freshwater at 2nd harvest (346 g/m(2) of dried biomass). The extracts maintained the in vitro biological properties and interesting chemical profile, however, these depended on the irrigation salinity and harvest regime. The highest antioxidant activities were obtained in extracts from plants irrigated with freshwater at the 3rd harvest (DPPH: 96.2%; ABTS: 89.1%; CCA: 61.6%; FRAP: 136%). The extracts from biomass obtained in 1st the harvest of freshwater-irrigated plants, and from those treated with 100 and 200 mM of NaCl, had significant anti-inflammatory properties. The main compounds detected were mostly flavonols (myricetin and quercetin glycosides), which varied according to both irrigation salinity and harvest. Our results indicate that sea knotgrass can be cultivated in greenhouse conditions aiming industrial commercial applications, irrigated with freshwater or with irrigation solutions with moderate salinity. Moreover, produced biomass maintain the biological and chemical properties previously detected in plants collected from the wild.
  • New insights into the phytochemical profile and biological properties of Lycium intricatum Bois. (Solanaceae)
    Publication . Bendjedou, Houaria; Benamar, Houari; Bennaceur, Malika; Rodrigues, Maria João; Pereira, Catarina Guerreiro; Trentin, Riccardo; L, Custódio
    This work aimed to boost the valorisation of Lycium intricatum Boiss. L. as a source of high added value bioproducts. For that purpose, leaves and root ethanol extracts and fractions (chloroform, ethyl acetate, n-butanol, and water) were prepared and evaluated for radical scavenging activity (RSA) on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,20 -azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals, ferric reducing antioxidant power (FRAP), and metal chelating potential against copper and iron ions. Extracts were also appraised for in vitro inhibition of enzymes implicated on the onset of neurological diseases (acetylcholinesterase: AChE and butyrylcholinesterase: BuChE), type-2 diabetes mellitus (T2DM, α-glucosidase), obesity/acne (lipase), and skin hyperpigmentation/food oxidation (tyrosinase). The total content of phenolics (TPC), flavonoids (TFC), and hydrolysable tannins (THTC) was evaluated by colorimetric methods, while the phenolic profile was determined by high-performance liquid chromatography, coupled to a diode-array ultraviolet detector (HPLCUV-DAD). Extracts had significant RSA and FRAP, and moderate copper chelation, but no iron chelating capacity. Samples had a higher activity towards α-glucosidase and tyrosinase, especially those from roots, a low capacity to inhibit AChE, and no activity towards BuChE and lipase. The ethyl acetate fraction of roots had the highest TPC and THTC, whereas the ethyl acetate fraction of leaves had the highest flavonoid levels. Gallic, gentisic, ferulic, and trans-cinnamic acids were identified in both organs. The results suggest that L. intricatum is a promising source of bioactive compounds with food, pharmaceutical, and biomedical applications.
  • Integrated approach to assess ecosystem health in harbor areas
    Publication . Bebianno, Maria João; Pereira, C.; Rey, F.; Cravo, Alexandra; Duarte, D. N.; D'Errico, G.; Regoli, F.
    Harbors are critical environments with strategic economic importance but with potential environmental impact: health assessment criteria are a key issue. An ecosystem health status approach was carried out in Portimão harbor as a case-study. Priority and specific chemical levels in sediments along with their bioavailability in mussels, bioassays and a wide array of biomarkers were integrated in a biomarker index (IBR index) and the overall data in a weight of evidence (WOE) model. Metals, PAHs, PCBs and HCB were not particularly high compared with sediment guidelines and standards for dredging. Bioavailability was evident for Cd, Cu and Zn. Biomarkers proved more sensitive namely changes of antioxidant responses, metallothioneins and vittellogenin-like proteins. IBR index indicated that site 4 was the most impacted area. Assessment of the health status by WOE approach highlighted the importance of integrating sediment chemistry, bioaccumulation, biomarkers and bioassays and revealed that despite some disturbance in the harbor area, there was also an impact of urban effluents from upstream.