Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 10 of 19
  • Assessing genetic diversity in clonal organisms: low diversity or low resolution? Combining power and cost efficiency in selecting markers
    Publication . ARNAUD-HAOND, Sophie; Alberto, F.; Teixeira, Sara; Procaccini, G.; Serrão, Ester; Duarte, C. M.
    The increasing use of molecular tools to study populations of clonal organisms leads us to question whether the low polymorphism found in many studies reflects limited genetic diversity in populations or the limitations of the markers used. Here we used microsatellite datasets for two sea grass species to provide a combinatory statistic, combined with a likelihood approach to estimate the probability of identical multilocus genotypes (MLGs) to be shared by distinct individuals, in order to ascertain the efficiency of the markers used and to optimize cost-efficiently the choice of markers to use for deriving unbiased estimates of genetic diversity. These results strongly indicate that conclusions from studies on clonal organisms derived using markers showing low polymorphism, including microsatellites, should be reassessed using appropriate polymorphic markers.
  • Characterization of 15 polymorphic microsatellite loci in the temperate reef fish Lepadogaster lepadogaster, developed using 454-sequencing
    Publication . Teixeira, Sara; Candeias, Rui; Klein, Maria; Serrão, Ester; Borges, R.
    Abstract The clingfish, Lepadogaster lepadogaster is a reef fish species, abundant in temperate nearshore rocky reefs of the Eastern Atlantic and central and Eastern Mediterranean. To study genetic variability and population connectivity of this species, we developed fifteen polymorphic microsatellite markers. These were tested in one population and all but one, showed no departure from Hardy–Weinberg equilibrium. Average overall observed heterozygosity was 0.66 and allelic richness was 8.9. Two primer pairs revealed possible linkage disequilibrium. These markers open perspectives for population genetic studies of this species to unravel connectivity and population biology, vital information for future conservation studies.
  • Shift happens: trailing edge contraction associated with recent warming trends threatens a distinct genetic lineage in the marine macroalga Fucus vesiculosus
    Publication . Nicastro, Katy R; I Zardi, Gerardo; Teixeira, Sara; Neiva, J.; Serrão, Ester; Pearson, G. A.
    Significant effects of recent global climate change have already been observed in a variety of ecosystems, with evidence for shifts in species ranges, but rarely have such consequences been related to the changes in the species genetic pool. The stretch of Atlantic coast between North Africa and North Iberia is ideal for studying the relationship between species distribution and climate change as it includes the distributional limits of a considerable number of both cold- and warm-water species. We compared temporal changes in distribution of the canopy-forming alga Fucus vesiculosus with historical sea surface temperature (SST) patterns to draw links between range shifts and contemporary climate change. Moreover, we genetically characterized with microsatellite markers previously sampled extinct and extant populations in order to estimate resulting cryptic genetic erosion. Results Over the past 30 years, a geographic contraction of the southern range edge of this species has occurred, with a northward latitudinal shift of approximately 1,250 km. Additionally, a more restricted distributional decline was recorded in the Bay of Biscay. Coastal SST warming data over the last three decades revealed a significant increase in temperature along most of the studied coastline, averaging 0.214°C/decade. Importantly, the analysis of existing and extinct population samples clearly distinguished two genetically different groups, a northern and a southern clade. Because of the range contraction, the southern group is currently represented by very few extant populations. This southern edge range shift is thus causing the loss of a distinct component of the species genetic background. Conclusions We reveal a climate-correlated diversity loss below the species level, a process that could render the species more vulnerable to future environmental changes and affect its evolutionary potential. This is a remarkable case of genetic uniqueness of a vanishing cryptic genetic clade (southern clade).
  • Genetic structure at range edge: Low diversity and high inbreeding in Southeast Asian mangrove (Avicennia marina) populations
    Publication . ARNAUD-HAOND, Sophie; Teixeira, Sara; Massa, S. I.; Billot, C.; Saenger, P.; Coupland, G.; Duarte, C. M.; Serrão, Ester
    Understanding the genetic composition and mating systems of edge populations provides important insights into the environmental and demographic factors shaping species’ distribution ranges. We analysed samples of the mangrove Avicennia marina from Vietnam, northern Philippines and Australia, with microsatellite markers. We compared genetic diversity and structure in edge (Southeast Asia, and Southern Australia) and core (North and Eastern Australia) populations, and also compared our results with previously published data from core and southern edge populations. Comparisons highlighted significantly reduced gene diversity and higher genetic structure in both margins compared to core populations, which can be attributed to very low effective population size, pollinator scarcity and high environmental pressure at distribution margins. The estimated level of inbreeding was significantly higher in northeastern populations compared to core and southern populations. This suggests that despite the high genetic load usually associated with inbreeding, inbreeding or even selfing may be advantageous in margin habitats due to the possible advantages of reproductive assurance, or local adaptation. The very high level of genetic structure and inbreeding show that populations of A. marina are functioning as independent evolutionary units more than as components of a metapopulation system connected by gene flow. The combinations of those characteristics make these peripheral populations likely to develop local adaptations and therefore to be of particular interest for conservation strategies as well as for adaptation to possible future environmental changes.
  • Vicariance patterns in the Mediterranean Sea: East-west cleavage and low dispersal in the endemic seagrass Posidonia oceanica
    Publication . ARNAUD-HAOND, Sophie; Migliaccio, M.; Diaz-Almela, E.; Teixeira, Sara; Van De Vliet, M. S.; Alberto, F.; Procaccini, G.; Duarte, C. M.; Serrão, Ester
    Aim  The seagrass, Posidonia oceanica is a clonal angiosperm endemic to the Mediterranean Sea. Previous studies have suggested that clonal growth is far greater than sexual recruitment and thus leads to low clonal diversity within meadows. However, recently developed microsatellite markers indicate that there are many different genotypes, and therefore many distinct clones present. The low resolution of markers used in the past limited our ability to estimate clonality and assess the individual level. New high-resolution dinucleotide microsatellites now allow genetically distinct individuals to be identified, enabling more reliable estimation of population genetic parameters across the Mediterranean Basin. We investigated the biogeography and dispersal of P. oceanica at various spatial scales in order to assess the influence of different evolutionary factors shaping the distribution of genetic diversity in this species. Location  The Mediterranean. Methods  We used seven hypervariable microsatellite markers, in addition to the five previously existing markers, to describe the spatial distribution of genetic variability in 34 meadows spread throughout the Mediterranean, on the basis of an average of 35.6 (± 6.3) ramets sampled. Results  At the scale of the Mediterranean Sea as a whole, a strong east–west cleavage was detected (amova). These results are in line with those obtained using previous markers. The new results showed the presence of a putative secondary contact zone at the Siculo-Tunisian Strait, which exhibited high allelic richness and shared alleles absent from the eastern and western basins. F statistics (pairwise θ ranges between 0.09 and 0.71) revealed high genetic structure between meadows, both at a small scale (about 2 to 200 km) and at a medium scale within the eastern and western basins, independent of geographical distance. At the intrameadow scale, significant spatial autocorrelation in six out of 15 locations revealed that dispersal can be restricted to the scale of a few metres. Main conclusions  A stochastic pattern of effective migration due to low population size, turnover and seed survival is the most likely explanation for this pattern of highly restricted gene flow, despite the importance of an a priori seed dispersal potential. The east–west cleavage probably represents the outline of vicariance caused by the last Pleistocene ice age and maintained to this day by low gene flow. These results emphasize the diversity of evolutionary processes shaping the genetic structure at different spatial scales.
  • Polymorphic microsatellite markers in the brown seaweed Fucus vesiculosus
    Publication . Candeias, Rui; Casado-Amezúa, Pilar; Pearson, G. A.; Serrão, Ester; Teixeira, Sara
    Background: Fucus vesiculosus is a brown seaweed dominant on temperate rocky shores of the northern hemisphere and, is typically distributed in the mid-upper intertidal zone. It is an external fertilizer that reproduces sexually, providing an excellent model to address conflicting theories related to mating systems and sexual selection. Microsatellite markers have been reported for several Fucus species, however the genomic libraries from where these markers have been isolated, have originated from two or more species pooled together (F. vesiculosus and F. serratus in one library; F. vesiculosus, F. serratus and Ascophyllum nodosum in a second library), or when the genomic DNA originated from only one species it was from Fucus spiralis. Although these markers cross-amplify F. vesiculosus individuals, the level of polymorphism has been low for relatedness studies. Findings: The microsatellite markers described here were obtained from an enriched genomic library, followed by 454 pyrosequencing. A total of 9 microsatellite markers were tested across 44 individuals from the North of Portugal. The mean number of alleles across loci was 8.7 and the gene diversity 0.67. Conclusions: The high variability displayed by these microsatellite loci should be useful for paternity analysis, assessing variance of reproductive success and in estimations of genetic variation within and between populations.
  • Microsatellite markers developed through pyrosequencing allow clonal discrimination in the invasive alga Caulerpa taxifolia
    Publication . ARNAUD-HAOND, Sophie; Candeias, Rui; Serrão, Ester; Teixeira, Sara
    Polymorphic microsatellites were developed for the invasive green algae Caulerpa taxifolia using next generation DNA sequencing. Results showed a limited rate of microsatellites for the amount of sequences, possibly explaining failure of previous attempts for microsatellite development through classical methods. Eight polymorphic loci were selected that exhibited polymorphism and a null or negligible rate of amplification failure. The number of alleles per locus ranged from two to seven. The reconstruction of Multi Locus Genotypes and the heterozygosity and departure from Hardy–Weinberg equilibrium confirmed the influence of clonal reproduction and showed the usefulness of this set of markers to successfully discriminate clonal lineages and analyze the clonal and genetic composition of algal beds. These markers will be used to further investigate the clonal composition and genetic structure in populations of C. taxifolia and to attempt retracing the origin of and pathways followed by invasive clonal lineages.
  • Panmixia in a fragmented and unstable environment: the hydrothermal shrimp Rimicaris exoculata disperses extensively along the Mid-Atlantic ridge
    Publication . Teixeira, Sara; Serrão, Ester; ARNAUD-HAOND, Sophie
    Dispersal plays a fundamental role in the evolution and persistence of species, and especially for species inhabiting extreme, ephemeral and highly fragmented habitats as hydrothermal vents. The Mid-Atlantic Ridge endemic shrimp species Rimicaris exoculata was studied using microsatellite markers to infer connectivity along the 7100-Km range encompassing the sampled sites. Astonishingly, no genetic differentiation was found between individuals from the different geographic origins, supporting a scenario of widespread large-scale dispersal despite the habitat distance and fragmentation. We hypothesize that delayed metamorphosis associated to temperature differences or even active directed migration dependent on physical and/or chemical stimuli could explain these results and warrant further studies on adaptation and dispersal mechanisms.
  • Characterization of polymorphic microsatellite loci in the Antarctic krill Euphausia superba
    Publication . Candeias, Rui; Teixeira, Sara; Duarte, C. M.; Pearson, G. A.
    Background: The Antarctic krill, Euphausia superba is a pelagic crustacean, abundant in high-density swarms (10 000 – 30 000 ind/m2) with a circumpolar distribution and a key role in the food web of the Southern Ocean. Only three EST derived microsatellite markers have been used in previous genetic studies, hence we developed additional highly polymorphic microsatellite markers to allow robust studies of the genetic variability and population differentiation within this species. Findings: The microsatellite markers described here were obtained through an enriched genomic library, followed by 454 pyrosequencing. A total of 10 microsatellite markers were tested in 32 individuals from the Antarctic Peninsula. One of the tested loci was fixed for one allele while the other was variable. Of the remaining nine markers, seven showed no departure from Hardy-Weinberg equilibrium. The mean number of alleles was 14.9. Conclusions: These markers open perspectives for population genetic studies of this species to unravel genetic structure, dispersal and population biology, vital information for future conservation.
  • Characterization of 15 polymorphic microsatellite loci in Rimicaris exoculata, and cross-amplification in other hydrothermal-vent shrimp
    Publication . Teixeira, Sara; Serrão, Ester; ARNAUD-HAOND, Sophie
    Abstract Rimicaris exoculata is an alvinocarid shrimp endemic to the hydrothermal vents of the Mid-Atlantic Ridge. In order to study genetic variability and connectivity in this species, we developed fifteen polymorphic microsatellite markers. The markers were tested on one population and, except for one, all showed no departure from Hardy–Weinberg equilibrium, with an average overall observed heterozygosity of 0.63. Two primer pairs revealed possible linkage disequilibrium, and 14 crossamplified at least one of the three co-occurring shrimp species tested (Alvinocaris muricola, Alvinocaris markensis and Mirocaris fortunata). These markers therefore open perspectives for population genetic studies of hydrothermal vent shrimp species in order to unravel connectivity and evolution of populations, and to add information on possible future impact studies.