Loading...
Research Project
DINOSSAUR: DINOflagellates for Sustained Supply of Active compoUnds in optimized photobioReactors
Funder
Authors
Publications
Effects of LED lighting on Nannochloropsis oceanica grown in outdoor raceway ponds
Publication . Carneiro, M.; Maia, Inês Beatriz; Cunha, P.; Guerra, I.; Magina, T.; Santos, Tamara; Schulze, Peter S.C.; Pereira, H.; Malcata, F. X.; Navalho, J.; Silva, J.; Otero, A.; Varela, João
Growth in most microalgal mass cultivation systems is light-limited, particularly in raceway ponds (RWP) where the light path is higher. Artificial lighting can be a promising solution to diminishing dark zones and enhance microalgal productivity. Therefore, our goal was to prevent the cell shift from photosynthesis to a respiration-only stage by resorting to LED illumination. Nannochloropsis oceanica cultures were accordingly grown out-doors in a preliminary small-scaleexperiment, followed by pilot-scale trials. In the former, three 3.0-m(2) RWP were set up under three distinct conditions: 1) without LEDs (control); 2) LEDs turned on during the night; and 3) LEDs turned on for 24 h. In the pilot-scale trial, one of two 28.9-m(2) pilot-scale RWPs was coupled to the best LED setup - determined in the small-scale preliminary experiment - using the same light intensity (normal mode) and half of the intensity (economy mode), with the second RWP serving as a control. In the preliminary experiment, the use of LEDs for 24 h was deemed as not helpful during daytime, before the culture reached asymptotic to 0.5 g DW L-1 - when dark zones appeared during the day due to sunlight attenuation in the 0.1 m-deep cultures. Overall, use of LEDs increased biomass growth chiefly by increasing nighttime productivities - materialized in higher chlorophyll, protein, and carbohydrate productivities in LED-lit cultures. A higher impact of LED lighting was observed under lower sunlight irradiances. A preliminary economic analysis indicates that use of LEDs in RWPs outdoors should be considered for high-value metabolites only.
Diel biochemical and photosynthetic monitorization of Skeletonema costatum and Phaeodactylum tricornutum grown in outdoor pilot-scale flat panel photobioreactors
Publication . Maia, Inês Beatriz; Carneiro, Mariana; Magina, Tânia; Malcata, F. Xavier; Otero, Ana; Navalho, João; Varela, João; Pereira, Hugo
Diatoms are currently considered valuable feedstocks for different biotechnological applications. To deepen the knowledge on the production of these microalgae, the diel pattern of batch growth, photosystem II performance, and accumulation of target metabolites of two commercially relevant diatoms, Phaeodactylum tricornutum and Skeletonema costatum, were followed outdoors in 100-L flat panel photobioreactors. S. costatum presented a higher light-to-biomass conversion resulting in higher growth than P. tricornutum. Both fluorescence data and principal component analysis pointed to temperature as a limiting factor for the growth of P. tricornutum. Higher protein and carbohydrate contents were found in P. tricornutum, whereas S. costatum fatty acids were charac-terized by a higher unsaturation degree. Higher productivities were found at 1 p.m. for protein, lipid, and ash in the case of S. costatum. Overall, S. costatum showed great potential for outdoor cultivation, revealing a broader temperature tolerance and increased biomass productivity than P. tricornutum.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
9471 - RIDTI
Funding Award Number
PTDC/BBB-EBB/1374/2014