CCMAR
Permanent URI for this community
Àcerca do Centro de Ciências do Mar => CCMAR
Browse
Browsing CCMAR by Author "A Costa, Rita"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Ocean acidification affects the expression of neuroplasticity and neuromodulation markers in seabreamPublication . A Costa, Rita; Olvera, Aurora; Power, Deborah Mary; Velez, ZéliaA possible explanation for acidification-induced changes in fish behaviour is that acidification interferes with neurogenesis and modifies the plasticity of neuronal circuitry in the brain. We tested the effects on the olfactory system and brain of gilthead seabream (Sparus aurata) to 4 weeks' exposure to ocean acidification (OA). Olfactory epithelium (OE) morphology changed shortly after OA exposure and persisted over the 4 weeks. Expression of genes related to olfactory transduction, neuronal excitability, synaptic plasticity, GABAergic innervation, and cell proliferation were unchanged in the OE and olfactory bulb (OB) after 4 weeks' exposure. Short-term changes in the ionic content of plasma and extradural fluid (EDF) returned to control levels after 4 weeks' exposure, except for [Cl-], which remained elevated. This suggests that, in general, there is an early physiological response to OA and by 4 weeks a new homeostatic status is achieved. However, expression of genes involved in proliferation, differentiation and survival of undifferentiated neurons were modified in the brain. In the same brain areas, expression of thyroid hormone signalling genes was altered suggesting modifications in the thyroid-system may be linked to the changes in neuroplasticity and neurogenesis. Overall, the results of the current study are consistent with and effect of OA on neuroplasticity.
- Thermal imprinting modifies adult stress and innate immune responsiveness in the teleost sea breamPublication . Mateus, Ana; A Costa, Rita; Cardoso, João CR; Andree, Karl B.; Estevez, Alicia; Gisbert, Enric; Power, DeborahThe impact of thermal imprinting on the plasticity of the hypothalamic-pituitary-interrenal (HPI) axis and stress response in an adult ectotherm, the gilthead sea bream (Sparus aurata, L.), during its development was assessed. Fish were reared under 4 thermal regimes, and the resulting adults exposed to acute confinement stress and plasma cortisol levels and genes of the HPI axis were monitored. Changes in immune function, a common result of stress, were also evaluated using histomorphometric measurements of melanomacrophages centers (MMCs) in the head kidney and by monitoring macrophage-related transcripts. Thermal history significantly modified the HPI responsiveness in adult sea bream when eggs and larvae were reared at a higher than optimal temperature (HT, 22 degrees C), and they had a reduced amplitude in their cortisol response and significantly upregulated pituitary pomc and head kidney star transcripts. Additionally, after an acute stress challenge, immune function was modified and the head kidney of adult fish reared during development at high temperatures (HT and LHT, 18-22 degrees C) had a decreased number of MMCs and a significant downregulation of dopachrome tautomerase. Thermal imprinting during development influenced adult sea bream physiology and increased plasma levels of glucose and sodium even in the absence of an acute stress in fish reared under a high-low thermal regime (HLT, 22-18 degrees C). Overall, the results demonstrate that temperature during early development influences the adult HPI axis and immune function in a teleost fish.