Browsing by Author "Abu-Salah, Khalid"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Development of a highly sensitive bacteria detection assay using fluorescent pH-responsive polymeric micellesPublication . Mouffouk, Fouzi; Rosa da Costa, Ana; Martins, Jorge; Zourob, Mohammed; Abu-Salah, Khalid; Alrokayan, Salman A.The detection and control of bacteria is extremely important in the safety of food products and health systems. The conventional microbiological methods based on culture enrichment techniques and plating procedures are highly sensitive and selective for bacterial detection but are expensive, cumbersome and time-consuming. Here we report the development of a simple and sensitive bioassay to detect Escherichia coli (E. coli) bacteria by using self assembled pH-responsive polymeric micelles that have been bioconjugated to anti-E. coli (capturing agent). Poly(ethylene glycol-b-trimethylsilyl methacrylate), containing silicon moieties that can be cleaved under mildly acidic conditions, was synthesized and selfassembled into micelles, that were loaded with a fluorescent dye (1-methylpyrene). The polymer silicon protecting groups are used as a tool to remotely activate the dye release by means of pH. The high sensitivity of the newly developed bioassay, which is capable of detecting 15 bacteria per milliliter of solution, is due to an amplification effect generated by the optical signal of millions of fluorophores released from a single micelle upon attachment to a bacterium. Fluorescence probing involves the measurements of changes in the emission spectra, through the disappearance of the excimer band, which only occurs when the dye molecules are trapped within the polymeric micelles.
- Self-assembled polymeric nanoparticles as new, smart contrast agents for cancer early detection using magnetic resonance imagingPublication . Mouffouk, Fouzi; Dornelle, Daniel; Lopes, Andre D.; Martins, Jorge; Abu-Salah, Khalid; Costa, Ana M. Rosa da; dos Santos, Nuno; Sau, Pablo; Simão, Teresa; Alrokayan, Salman A.Early cancer detection is a major factor in the reduction of mortality and cancer management cost. Here we developed a smart and targeted micelle-based contrast agent for magnetic resonance imaging (MRI), able to turn on its imaging capability in the presence of acidic cancer tissues. This smart contrast agent consists of pH-sensitive polymeric micelles formed by self-assembly of a diblock copolymer (poly(ethyleneglycol-b-trimethylsilyl methacrylate)), loaded with a gadolinium hydrophobic complex ((t)BuBipyGd) and exploits the acidic pH in cancer tissues. In vitro MRI experiments showed that (t)BuBipyGd-loaded micelles were pH-sensitive, as they turned on their imaging capability only in an acidic microenvironment. The micelle-targeting ability toward cancer cells was enhanced by conjugation with an antibody against the MUC1 protein. The ability of our antibody-decorated micelles to be switched on in acidic microenvironments and to target cancer cells expressing specific antigens, together with its high Gd(III) content and its small size (35-40 nm) reveals their potential use for early cancer detection by MRI.