Browsing by Author "Alexandrino, Maria"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- A bacterial consortium isolated from an Icelandic fumarole displays exceptionally high levels of sulfate reduction and metals resistancePublication . Alexandrino, Maria; Macías, Francisco; Da Silva Costa, Rodrigo; Gomes, Newton C. M.; Canario, Adelino V. M.; Costa, Maria ClaraThe soils of three fumaroles and one mining site, all with high metal content, were surveyed for the presence of metal-resistant sulfate-reducing bacteria and their potential application in the bioremediation of acid mine drainages. By means of selective soil enrichments a bacterial consortium was isolated from an Icelandic fumarole that displayed very high sulfate reduction in the presence of a mixture of 0.75 g/L of Fe, 0.20 g/L of Zn and 0.080 g/L of Cu. Under these conditions the bacterial consortium reduced 91% of the added 3.9 g/L of sulfate after 28 days, precipitating 100% of the Fe, 96% of the Zn and 97% of the Cu during the same time. Both total bacterial numbers and numbers of culturable sulfate-reducing bacteria remained unchanged when grown in media containing metals, suggesting low or absent inhibitory effects of the metals on the bacterial consortium. PCR-DGGE profiles of the sulfate reducing bacterial communities obtained from the Icelandic fumarole sample showed that bacterial diversity decreased significantly after metal addition: from the original 12 ribotypes only two were detected in the metaltolerant culture. Phylogenetic analysis of 16S ribosomal RNA gene sequences revealed that these two ribotypes were affiliated with the genera Clostridium and Desulfovibrio, with C. subterminale, C. pascui, C. mesophilum and C. peptidovorans and D. desulfuricans identified as their closest relatives.
- Clostridia Initiate Heavy Metal Bioremoval in Mixed Sulfidogenic CulturesPublication . Alexandrino, Maria; Costa, Rodrigo; Canario, Adelino V. M.; Costa, Maria ClaraSulfate reducing bacteria (SRB) are widely used for attenuating heavy metal pollution by means of sulfide generation. Due to their low metal tolerance, several SRB species depend on associated bacteria in mixed cultures to cope with metal-induced stress. Yet the identity of the SRB protecting bacteria is largely unknown. We aimed to identify these associated bacteria and their potential role in two highly metal-resistant mixed SRB cultures by comparing bacterial community composition and SRB activity between these cultures and two sensitive ones. The SRB composition in the resistant and sensitive consortia was similar. However, whereas the SRB in the sensitive cultures were strongly inhibited by a mixture of copper, zinc, and iron, no influence of these metals was detected on SRB growth and activity in the resistant cultures. In the latter, a Gram-positive population mostly assigned to Clostridium spp.initiated heavy metal bioremoval based on sulfide generation from components of the medium (mainly sulfite) but not from sulfate. After metal levels were lowered by the Clostridium spp. populations, SRB started sulfate reduction and raised the pH of the medium. The combination of sulfite reducing Clostridium spp. with SRB may improve green technologies for removal of heavy metals.
