Browsing by Author "Almouazen, Eyad"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Sulphated locust bean gum-coated lipid nanocapsules as potential lung delivery carriersPublication . Pontes, Jorge Filipe; Braz, L.; Guerreiro, Filipa; Rosa Da Costa, Ana; Almouazen, Eyad; Lollo, Giovanna; Grenha, AnaDrugs pertaining to Biopharmaceutics Classification System (BCS) classes II and IV have limitations in their delivery, including in the lung. Therefore, drug delivery carriers have been proposed to improve the therapeutic effectiveness of such drugs. This work proposes lipid nanocapsules (LNC) as a potential platform for lung drug delivery. Locust bean gum (LBG), which is a galactomannan, was used as polymeric shell, protecting the oily core of the nanocapsules and providing their surface with hydrophilic character. Due to the neutral character of LBG, in order to enable nanocapsule formation, a sulphate derivative (LBGS) was prepared, which was confirmed by Fourier-transformed infrared (FTIR) spectroscopy. The electrostatic interaction between the negatively charged sulphate groups of LBGS and the positively charged groups of the used cationic lipid (1,2-dioleoyloxy-3- trimethylammoniumpropanchloride, DOTAP), allowed the formation of monodisperse nanocapsules, with sizes around 200 nm and strongly negative zeta potentials, between -70 and -85 mV. Envisaging potential lung drug delivery, the LBGS-coated LNC were co-formulated with mannitol using spray-drying, producing microencapsulated nanocapsules. Feret’s diameter was determined to be 2.6 ± 1.8 µm and 3.1 ± 1.9 µm for Man (control) and Man/LNC microparticles, respectively. Further studies are underway in order to optimise both the nanoplatform and the dry powder formulation.
- Supersaturable self-microemulsifying delivery systems: an approach to enhance oral bioavailability of benzimidazole anticancer drugsPublication . Rosso, Annalisa; Almouazen, Eyad; Pontes, Jorge Filipe; Andretto, Valentina; Leroux, Marine; Romasko, Etienne; Azzouz-Maache, Samira; Bordes, Claire; Coste, Isabelle; Renno, Touffic; Giraud, Stephane; Briancon, Stephanie; Lollo, GiovannaThis study explored the design of supersaturable self-microemulsifying drug delivery systems (S-SMEDDS) to address poor solubility and oral bioavailability of a novel benzimidazole derivative anticancer drug (BI). Firstly, self-microemulsifying drug delivery systems SMEDDS made of Miglyol (R) 812, Kolliphor (R) RH40, Transcutol (R) HP, and ethanol were prepared and loaded with the BI drug. Upon dispersion, the systems formed neutrally charged droplets of around 20 nm. However, drug precipitation was observed following incubation with simulated gastric fluid (pH 1.2). Aiming at reducing this precipitation and enhancing drug payload, supersaturable systems were then prepared by adding 1% hydroxypropyl cellulose as precipitation inhibitor. Supersaturable systems maintained a higher amount of drug in a supersaturated state in gastric medium compared with conventional formulations and were stable in simulated intestinal medium ( pH 6.8). In vitro cell studies using Caco-2 cell line showed that these formulations reduced in a transient manner the transepithelial electrical resistance of the monolayers without toxicity. Accordingly, confocal images revealed that the systems accumulated at tight junctions after a 2 h exposure. In vivo pharmacokinetic studies carried out following oral administration of BI-loaded S-SMEDDS, SMEDDS, and free drug to healthy mice showed that supersaturable systems promoted drug absorption compared with the other formulations. Overall, these data highlight the potential of using the supersaturable approach as an alternative to conventional SMEDDS for improving oral systemic absorption of lipophilic drugs.