Browsing by Author "Alughare, Zohre Eskandari"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- Gold nanorods functionalized with DNA oligonucleotide probes for biosensing and plasmon-enhanced fluorescence detectionPublication . Alughare, Zohre Eskandari; Paulo, Pedro M. R.; Garcia, Ana RosaGold nanorods display plasmon resonances that are very sensitive to the refraction index close to the particle’s surface. The site-selective functionalization of Plasmon hot-spots with bioreceptors is crucial to develop plasmonic sensors with improved response bycapturing the target species at the most sensitive regions of the particle. Firstly, we used surface immobilized biotin-functionalized gold nanorods for streptavidin sensing.The selective functionalization of the nanorods’ tips was achieved with a CTAB bilayer and using a thiol linker to attach the desired biotin functionality. The sensor performance was characterized by measuring binding kinetic assays. In the recent years, Dengue virus DENV-2 has been reported as the largest dengue epidemic type and early stage detection of this virus would save the life of many patients. Thus, a plasmonic model biosensor was designed for the detection of RNA sequences proposed as disease biomarkers for Dengue virus.For this purpose, we have functionalized gold nanorods with thiolated DNA oligonucleotide probes complementary to a RNA sequence of Dengue virus.As a signal amplification strategy, we have used biotin-labeled oligonucleotide target sequences, in order to bind streptavidin or anti-biotin antibody to increase the surface plasmon response. Plasmon-enhanced fluorescence (PEF) microscopy provides fast, high-contrast, and lowbackground detection of single molecules. The interaction between the localized surface plasmon of gold nanorods and a fluorophore in their vicinity can induce the acceleration of excitation and decay rates thus leading to substantial fluorescence enhancements. In the third part of this Thesis, it was studied the interaction between gold nanorod antennas and a weakly fluorescence dye, TMPyP porphyrin. This interaction was mediated by electrostatic attraction between the tetracationic TMPyP and the DNA oligonucleotide coating on the nanorods’ surface. Preliminary measurements of optical spectroscopy were carried out to characterize the interaction in solution of TMPyP and single or double-stranded DNA oligonucleotides complementary to a RNA sequence of Dengue virus.The apparent equilibrium constants for the complex of TMPyP with single and double-stranded DNA were determined to be Ka= 3.9×107 M-1and 4.5×107 M-1respectively. The spectral changes show a strong specific intercalation of TMPyP with ds-DNA and ss-DNA because of GC-rich sites in the selected sequences. Next, the plasmon-enhanced fluorescence of TMPyP induced by gold nanorods was investigated using confocal fluorescence lifetime microscopy to perform measurements of nanoparticle emission intensity and spectrum, fluorescence correlation spectroscopy, emission intensity time trace and fluorescence decay. The gold nanorods were immobilized on glass and functionalized with a thiolated oligonucleotide coating, while TMPyP molecules are diffusing in solution and stochastically interact with the rod’s surface. The emission intensity traces measured on single particles show strong fluorescence bursts when TMPyP molecules come into close proximity of the nanorod. We have calculated the emission enhancement factors from a comparison with the non-enhanced emission of TMPyP in the same experimental conditions and found surprisingly large enhancement factors of around 60000-fold for TMPyP’s emission.These values of enhancement are two orders of magnitude larger than our calculated highest enhanced fluorescence expected for TMPyP molecule.