Percorrer por autor "Amorim, Ana"
A mostrar 1 - 8 de 8
Resultados por página
Opções de ordenação
- Characterizing phytoplankton biomass seasonal cycles in two NE Atlantic coastal baysPublication . Santos, Mariana; Mouriño, Helena; Calixto De Jesus Moita Garnel, Maria Teresa; Silva, Alexandra; Amorim, Ana; Oliveira, Paulo B.The seasonal and interannual variability of chlorophyll a was studied between 2008 and 2016 in two coastal bays located in the northeastern limit of the Iberia/Canary upwelling ecosystem. The work aims (i) to understand if small latitudinal distances and/or coastline orientation can promote different chlorophyll a seasonal cycles; and (ii) to investigate if different meteorological and oceanographic variables can explain the differences observed on seasonal cycles. Results indicate three main biological seasons with different patterns in the two studied bays. A uni-modal pattern with a short early summer maximum and relatively low chlorophyll a concentration characterized the westernmost sector of the South coast, while a uni-modal pattern characterized by high biomass over a long period, slightly higher in spring than in summer, and high chlorophyll a concentration characterized the central West coast. Comparisons made between satellite estimates of chlorophyll a and in situ data in one of the bays revealed some important differences, namely the overestimation of concentrations and the anticipation of the beginning and end time of the productive period by satellite. Cross-correlation analyses were performed for phytoplankton biomass and different meteorological and oceanographic variables (SST, PAR, UI, MLD and precipitation) using different time lags to identify the drivers that promote the growth and the high levels of phytoplankton biomass. PAR contributed to the increase of phytoplankton biomass observed during winter/midspring, while upwelling and SST were the main explanatory drivers to the high Chl-a concentrations observed in late-spring/summer. Zonal transport was the variable that contributed most to the phytoplankton biomass during late-spring/summer in Lisbon Bay, while the meridional transport combined with SST was more important in Lagos Bay.
- Effect of temperature on growth and yessotoxin production of protoceratium reticulatum and lingulodinium polyedra (Dinophyceae) isolates from the Portuguese coast (NE Atlantic)Publication . Barbosa, Miguel; Reis Costa, Pedro; David, Helena; Lage, Sandra; Amorim, AnaThe dinoflagellates Protoceratium reticulatum and Lingulodinium polyedra are potential yessotoxin (YTX) producers, which have been associated with blooms responsible for economic, social, and ecological impacts around the world. They occur in Iberian waters, but in this region, little is known of their ecophysiology and toxin profiles. This study investigated the growth and toxin production of two strains of each species, from the Portuguese coast, at 15 degrees C, 19 degrees C, and 23 degrees C. Growth curves showed higher growth rates at 19 degrees C, for both species. YTX and three analogs (homo YTX; 45-OH YTX; 45-OH homo YTX) were investigated by Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS), and the presence of other analogs was investigated by Liquid Chromatography-High-Resolution Mass Spectrometry (LC-HRMS). No evidence of toxin production was found in L. polyedra. By contrast, YTX and 45,55-diOH-YTX were detected in both strains of P. reticulatum. These results confirm P. reticulatum as a source of yessotoxins along the Portuguese coast and add to the observed high intraspecific variability on YTX production of both species, at a global scale.
- Gymnodinium catenatum paralytic Shellfish toxin production and photobiological responses under marine heat wavesPublication . Lopes, Vanessa M.; Court, Mélanie; Seco, Martim Costa; Borges, Francisco O.; Vicente, Bernardo; Lage, Sandra; Braga, Ana Catarina; Duarte, Bernardo; Santos, Catarina Frazão; Amorim, Ana; Reis Costa, Pedro; Rosa, RuiMarine heatwaves (MHWs) have doubled in frequency since the 1980s and are projected to be exacerbated during this century. MHWs have been shown to trigger harmful algal blooms (HABs), with severe consequences to marine life and human populations. Within this context, this study aims to understand, for the first time, how MHWs impact key biological and toxicological parameters of the paralytic shellfish toxin (PST) producer Gymnodinium catenatum, a dinoflagellate inhabiting temperate and tropical coastal waters. Two MHW were simulated—category I (i.e., peak: 19.9 ◦C) and category IV (i.e., peak: 24.1 ◦C)—relative to the estimated baseline in the western coast of Portugal (18.5 ◦C). No significant changes in abundance, size, and photosynthetic efficiency were observed among treatments. On the other hand, chain-formation was significantly reduced under category IV MHW, as was PSP toxicity and production of some PST compounds. Overall, this suggests that G. catenatum may have a high tolerance to MHWs. Nevertheless, some sublethal effects may have occurred since chain-formation was affected, suggesting that these growth conditions may be sub-optimal for this population. Our study suggests that the increase in frequency, intensity, and duration of MHWs may lead to reduced severity of G. catenatum blooms.
- New physical and biological evidence of lateral transport affecting dinoflagellate cyst distribution in the benthic nepheloid layer along a land-sea transect off Figueira da Foz (Atlantic Iberian margin)Publication . García-Moreiras, Iria; Hatherly, Melissa; Zonneveld, Karin; Dubert, Jesus; Nolasco, Rita; Santos, Ana Isabel; Oliveira, Anabela; Moita, Teresa; Oliveira, Paulo B.; Magalhães, Jorge M.; Amorim, Anantroduction The production of resting cysts is a key dispersal and survival strategy of many dinoflagellate species. However, little is known about the role of suspended cysts in the benthic nepheloid layer (BNL) in the initiation and decline of planktonic populations.Methods In September 2019, sampling of the dinoflagellate cyst community at different water depths in the water column and in the bottom sediments, and studies of spatio-temporal changes in physical properties (temperature, salinity, density and suspended sediment concentration), were carried out along a land-sea transect off Figueira da Foz (NW Portugal) to investigate the dinoflagellate cyst distribution and the factors (physical and biological) affecting it. A clustering analysis was used to compare the BNL and sediment cyst records with the cyst rain recorded by a sediment trap at a fixed station. Furthermore, Lagrangian particle experiments enabled simulating cyst trajectories in the BNL 5 and 10 days before sampling and assessing cross-shore, vertical and alongshore transport within the studied region.Results A well-developed BNL was present during the survey, which covered a change from active (14th of September) to relaxed (19th of September) upwelling conditions. Organic-walled dinoflagellate cysts were dominant in all samples, although calcareous dinoflagellate cysts consistently occurred (at low abundances). High proportions of full cysts were observed in the BNL, of which a significant portion was viable as shown by excystment experiments. Moreover, BNL cyst records collected on the 19th of September along the land-sea transect were similar to the sediment trap cyst record but greatly differed from sediment cyst records. The heterotrophic small spiny brown cysts (SBC) and cysts of the autotrophic yessotoxin-producer Protoceratium reticulatum notably increased during the survey, in the BNL and in the water column above.Discussion The comparison of the BNL, surface sediment and sediment trap cyst records supported that the main origin of cysts in the BNL was the recent production in the water column. The spatial coincidences in the distribution of cysts and vegetative cells of Protoceratium reticulatum also supported that full cysts in the water column were being produced in surface waters. New data evidenced the presence of a significant reservoir of viable cysts in the BNL that have the potential to seed new planktonic blooms. Furthermore, back-track particle modelling evidenced that alongshore advection was the main physical mechanism controlling cyst dynamics in the BNL during most part of the survey period, being particularly intense in coastal stations (<100 m depth). Consequently, the sediment cyst signal is a mixture of locally and regionally produced cysts. We provide multi-disciplinary data evidencing that cysts recently formed in the photic zone can be laterally advected within the studied region through the BNL, contributing to a better understanding of the role of the BNL in cyst dynamics and tracing the seed sources of the new blooms.
- Ocurrence of Ostreopsis in two temperate coastal bays (SW iberia): Insights from the planktonPublication . Santos, Mariana; Oliveira, Paulo B.; Calixto De Jesus Moita Garnel, Maria Teresa; David, Helena; Caeiro, Maria Filomena; Zingone, Adriana; Amorim, Ana; D. Silva, AlexandraThe benthic genus Ostreopsis contains toxic-bloom forming species and is an important cause of concern in warm-temperate and tropical waters. On the coast of Portugal, NE Atlantic, the occurrence of Ostreopsis cf. siamensis and Ostreopsis cf. ovata has been reported since 2008 and 2011, respectively. This work aims to understand the favorable conditions for high concentrations of Ostreopsis cells in the plankton at two sites, Lagos and Lisbon Bays, located in the South and West coast of Portugal, respectively. This study is based on weekly Ostreopsis abundance data in the plankton, from 2011 to 2017, daily satellite and in situ sea surface temperature (SST), and meteorological and sea state parameters, namely wind stress and significant wave height. The molecular identification of local Ostreopsis spp. is also presented. The maximum cell densities occur between late-summer and autumn. The distribution range of Ostreopsis cf. ovata is restricted to the South coast, while Ostreopsis cf. siamensis has a wider distribution range, being also present on the West coast. In the study period, there was only one occurrence of Ostreopsis spp., in Lagos Bay, with concentrations within the alert phase of monitoring. In Lagos Bay, high Ostreopsis spp. concentrations were related with positive SST anomalies. These high concentrations were often recorded after a period of almost 2-weeks to more than 4-weeks of low sea state ( < 0.6 m), followed by short time events of onshore wind and moderate waves (0.6-1 m). The former conditions are interpreted as favoring bloom development on the substrate and the latter as causing the re-suspension of Ostreopsis cells in the water column. In Lisbon Bay, O. cf. siamensis occurred in the plankton in few occasions and no clear relation could be established with the studied environmental variables. It is here hypothesized that the recent records of O. cf. siamensis in Lisbon Bay may correspond to an early colonization stage of an invasion process. Knowledge gained on Ostreopsis dynamics along the Portuguese coast can be used for both the improvement of benthic harmful algal blooms (BHABs) monitoring in the region and as a basis to design forecasting models.
- Phytoplankton communities in two wide-open bays in the Iberian upwelling systemPublication . Santos, Mariana; Moita, Maria Teresa; Oliveira, Paulo B.; Amorim, AnaThe main meteorological and oceanographic drivers shaping phytoplankton community structure and dynamics are investigated in two wide-open bays influenced by coastal upwelling. Local processes influencing the proliferation of harmful algal bloom species were also investigated. The work was developed during one year in Lisbon Bay (central-west coast) and in Lagos Bay (south coast), both located on the upwelling shadow of prominent headlands. In both bays, the results indicated a bi-modal annual pattern in phytoplankton biomass, and phytoplankton concentration maxima, between spring and late-summer, were associated with high diatom abundances. In Lagos Bay, higher dinoflagellate abundances were observed from spring to autumn, while in Lisbon Bay these were recorded from late-summer to autumn. The coccolithophores were a frequent group all year round in Lisbon Bay, which contrasts with Lagos Bay where they were the least frequent group. The phytoplankton community structure showed significant spatial and seasonal differences. The community succession pattern indicated the existence of four biological seasons in Lisbon Bay and at the offshore site in Lagos Bay. By contrast, the nearshore site in Lagos Bay was characterized by having no significant differences between summer and autumn. Differences in HAB species/groups were also observed between the bays. In general, HABs occurred at higher concentrations and were more persistent in Lagos Bay. In both bays, winter assemblages were influenced by water column mixing processes, although precipitation was also relevant in Lagos. Upwelling was a key driver of the spring phytoplankton community in Lagos Bay, while in Lisbon Bay other factors seemed to drive the spring phytoplankton assemblages. Both summer and autumn communities were related to thermal stratification. In autumn, the occurrence of reversal circulation patterns also played an important role in shaping the phytoplankton communities, especially in Lagos Bay. Overall, this study revealed differences on phytoplankton community patterns in two wide-open bays, shaped by the local environmental variables.
- Projecting future climate change-mediated impacts in Three Paralytic Shellfish Toxins-Producing dinoflagellate speciesPublication . Borges, Francisco O.; Lopes, Vanessa M.; Amorim, Ana; Santos, Catarina F.; Reis Costa, Pedro; Rosa, RuiSimple Summary Harmful algal blooms present a particular risk for marine ecosystems and human health alike. In this sense, it is important to accurately predict how toxin-producing microalgae could be affected by future climate change. The present study applied species distribution models (SDMs) to project the potential changes in the habitat suitability and distribution of three key paralytic shellfish toxin (PST)-producing dinoflagellate species (i.e., Alexandrium catenella, A. minutum, and Gymnodinium catenatum), up to 2040/50 and 2090/2100, across four different greenhouse gas emission scenarios, and using four abiotic predictors (i.e., sea surface temperature, salinity, current velocity, and bathymetry). In general, considerable contractions were observed for all three species in the lower latitudes of their distribution, together with projected expansions into higher latitudes, particularly in the Northern Hemisphere. This study aims to entice further research on the future biogeographical impacts of climate change in toxin-producing microalgae species while, at the same time, helping to advise the correct environmental management of coastal habitats and ecosystems. Toxin-producing microalgae present a significant environmental risk for ecosystems and human societies when they reach concentrations that affect other aquatic organisms or human health. Harmful algal blooms (HAB) have been linked to mass wildlife die-offs and human food poisoning episodes, and climate change has the potential to alter the frequency, magnitude, and geographical extent of such events. Thus, a framework of species distribution models (SDMs), employing MaxEnt modeling, was used to project changes in habitat suitability and distribution of three key paralytic shellfish toxin (PST)-producing dinoflagellate species (i.e., Alexandrium catenella, A. minutum, and Gymnodinium catenatum), up to 2050 and 2100, across four representative concentration pathway scenarios (RCP-2.6, 4.5, 6.0, and 8.5; CMIP5). Despite slightly different responses at the regional level, the global habitat suitability has decreased for all the species, leading to an overall contraction in their tropical and sub-tropical ranges, while considerable expansions are projected in higher latitudes, particularly in the Northern Hemisphere, suggesting poleward distributional shifts. Such trends were exacerbated with increasing RCP severity. Yet, further research is required, with a greater assemblage of environmental predictors and improved occurrence datasets, to gain a more holistic understanding of the potential impacts of climate change on PST-producing species.
- Toxin profile of two Gymnodinium catenatum strains from Iberian Coastal WatersPublication . Leal, Joana F.; Bombo, Gabriel; Pereira, Hugo; Vicente, Bernardo; Amorim, Ana; Cristiano, Maria L. S.Gymnodinium catenatum has been the main species responsible for paralytic shellfish poisoning events along the Portuguese coast (Iberian Peninsula), causing bans on bivalve harvesting that result in huge economic losses. This work presents the characterization of two novel isolates of G. catenatum regarding their growth and toxin profiles. Laboratory growth experiments revealed that, although low growth rates were obtained during cultivation, the cell yields were high compared to those reported in the literature. Evaluation of the toxin profiles, by HPLC-FLD, essentially confirmed the typical composition of toxins of this regional population (Iberian Peninsula), namely, the absence or low representation of the toxins dcNEO, GTX1,4 and NEO and a higher ratio of the toxins C1,2, GTX6 and GTX5. However, the percentage of the identified toxins varied among the strains of this study (under the same isolation, growth, and analysis conditions), and also differed from that of other strains described in the literature. Interestingly, we found a comparatively high abundance of dcSTX in both strains, relative to the other toxins, and an unquantifiable amount of C3,4 toxins. In addition to the geographic relationship between toxin profiles, chemical conversions among toxins may explain some differences encountered in the toxin profiles of G. catenatum strains.
