Browsing by Author "Bárbara, Ignacio"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Future climate change is predicted to shift long-term persistence zones in the cold-temperate kelp Laminaria hyperboreaPublication . Assis, J.; Lucas, Ana Vaz; Bárbara, Ignacio; Serrão, EsterGlobal climate change is shifting species distributions worldwide. At rear edges (warmer, low latitude range margins), the consequences of small variations in environmental conditions can be magnified, producing large negative effects on species ranges. A major outcome of shifts in distributions that only recently received attention is the potential to reduce the levels of intra-specific diversity and consequently the global evolutionary and adaptive capacity of species to face novel disturbances. This is particularly important for low dispersal marine species, such as kelps, that generally retain high and unique genetic diversity at rear ranges resulting from long-term persistence, while ranges shifts during climatic glacial/interglacial cycles. Using ecological niche modelling, we (1) infer the major environmental forces shaping the distribution of a cold-temperate kelp, Laminaria hyperborea (Gunnerus) Foslie, and we (2) predict the effect of past climate changes in shaping regions of long-term persistence (i.e., climatic refugia), where this species might hypothetically harbour higher genetic diversity given the absence of bottlenecks and local extinctions over the long term. We further (3) assessed the consequences of future climate for the fate of L. hyperborea using different scenarios of greenhouse gas emissions (RCP 2.6 and RCP 8.5). Results show NW Iberia, SW Ireland and W English Channel, Faroe Islands and S Iceland, as regions where L. hyperborea may have persisted during past climate extremes until present day. All predictions for the future showed expansions to northern territories coupled with the significant loss of suitable habitats at low latitude range margins, where long-term persistence was inferred (e.g., NW Iberia). This pattern was particularly evident in the most agressive scenario of climate change (RCP 8.5), likely driving major biodiversity loss, changes in ecosystem functioning and the impoverishment of the global gene pool of L. hyperborea. Because no genetic baseline is currently available for this species, our results may represent a first step in informing conservation and mitigation strategies. (C) 2015 Elsevier Ltd. All rights reserved.
- Non-indigenous seaweeds in the Northeast Atlantic Ocean, the Mediterranean Sea and Macaronesia: a critical synthesis of diversity, spatial and temporal patternsPublication . van der Loos, Luna M.; Bafort, Quinten; Bosch, Samuel; Ballesteros, Enric; Bárbara, Ignacio; Berecibar, Estibaliz; Blanfuné, Aurélie; Bogaert, Kenny; Bouckenooghe, Silke; Boudouresque, Charles-François; Brodie, Juliet; Cecere, Ester; Díaz-Tapia, Pilar; Engelen, Aschwin; Gunnarson, Karl; Shabaka, Soha Hamdy; Hoffman, Razy; Husa, Vivian; Israel, Álvaro; Karremans, Mart; Knoop, Jessica; Le Gall, Line; Maggs, Christine A.; Mineur, Frédéric; Parente, Manuela; Perk, Frank; Petrocelli, Antonella; Rodríguez-Prieto, Conxi; Ruitton, Sandrine; Sansón, Marta; A Serrao, Ester; Sfriso, Adriano; Sjøtun, Kjersti; Stiger-Pouvreau, Valérie; Surget, Gwladys; Taşkin, Ergün; Thibaut, Thierry; Tsiamis, Konstantinos; Van De Weghe, Lotte; Verlaque, Marc; Viard, Frédérique; Vranken, Sofie; Leliaert, Frederik; De Clerck, OlivierEffective monitoring of non-indigenous seaweeds and combatting their effects relies on a solid confirmation of the non-indigenous status of the respective species. We critically analysed the status of presumed non-indigenous seaweed species reported from the Mediterranean Sea, the Northeast Atlantic Ocean and Macaronesia, resulting in a list of 140 species whose non-indigenous nature is undisputed. For an additional 87 species it is unclear if they are native or non-indigenous (cryptogenic species) or their identity requires confirmation (data deficient species). We discuss the factors underlying both taxonomic and biogeographic uncertainties and outline recommendations to reduce uncertainty about the non-indigenous status of seaweeds. Our dataset consisted of over 19,000 distribution records, half of which can be attributed to only five species (Sargassum muticum, Bonnemaisonia hamifera, Asparagopsis armata, Caulerpa cylindracea and Colpomenia peregrina), while 56 species (40%) are recorded no more than once or twice. In addition, our analyses revealed considerable variation in the diversity of non-indigenous species between the geographic regions. The Eastern Mediterranean Sea is home to the largest fraction of non-indigenous seaweed species, the majority of which have a Red Sea or Indo-Pacific origin and have entered the Mediterranean Sea mostly via the Suez Canal. Non-indigenous seaweeds with native ranges situated in the Northwest Pacific make up a large fraction of the total in the Western Mediterranean Sea, Lusitania and Northern Europe, followed by non-indigenous species with a presumed Australasian origin. Uncertainty remains, however, regarding the native range of a substantial fraction of non-indigenous seaweeds in the study area. In so far as analyses of first detections can serve as a proxy for the introduction rate of non-indigenous seaweeds, these do not reveal a decrease in the introduction rate, indicating that the current measures and policies are insufficient to battle the introduction and spread of non-indigenous species in the study area.