Browsing by Author "Bargelloni, Luca"
Now showing 1 - 10 of 17
Results Per Page
Sort Options
- A Microarray study of Carpet-Shell Clam (Ruditapes decussatus) shows common and organ-specific growth-related gene expression Differences in gills and digestive glandPublication . Saavedra, Carlos; Milan, Massimo; Leite, Ricardo B.; Cordero, David; Patarnello, Tomaso; Leonor Cancela, M.; Bargelloni, LucaGrowth rate is one of the most important traits from the point of view of individual fitness and commercial production in mollusks, but its molecular and physiological basis is poorly known. We have studied differential gene expression related to differences in growth rate in adult individuals of the commercial marine clam Ruditapes decussatus. Gene expression in the gills and the digestive gland was analyzed in 5 fast-growing and five slow-growing animals by means of an oligonucleotide microarray containing 14,003 probes. A total of 356 differentially expressed genes (DEG) were found. We tested the hypothesis that differential expression might be concentrated at the growth control gene core (GCGC), i. e., the set of genes that underlie the molecular mechanisms of genetic control of tissue and organ growth and body size, as demonstrated in model organisms. The GCGC includes the genes coding for enzymes of the insulin/ insulin-like growth factor signaling pathway (IIS), enzymes of four additional signaling pathways (Raf/ Ras/ Mapk, Jnk, TOR, and Hippo), and transcription factors acting at the end of those pathways. Only two out of 97 GCGC genes present in themicroarray showed differential expression, indicating a very little contribution of GCGC genes to growth-related differential gene expression. Forty eight DEGs were shared by both organs, with gene ontology (GO) annotations corresponding to transcription regulation, RNA splicing, sugar metabolism, protein catabolism, immunity, defense against pathogens, and fatty acid biosynthesis. GO termenrichment tests indicated that genes related to growth regulation, development and morphogenesis, extracellular matrix proteins, and proteolysis were overrepresented in the gills. In the digestive gland overrepresented GO terms referred to gene expression control through chromatin rearrangement, RAS-related small GTPases, glucolysis, and energy metabolism. These analyses suggest a relevant role of, among others, some genes related to the IIS, such as the ParaHox gene Xlox, CCAR and the CCN family of secreted proteins, in the regulation of growth in bivalves.
- Changes in the gene expression profiles of the brains of male European eels (Anguilla anguilla) during sexual maturationPublication . Churcher, Allison; Pujolar, Jose M.; Milan, Massimo; Hubbard, Peter; Martins, Rute S. T.; L. Saraiva, João; Huertas, Mar; Bargelloni, Luca; Patarnello, T.; Marino, Ilaria A. M.; Zane, Lorenzo; Canario, Adelino V. M.Background: The vertebrate brain plays a critical role in the regulation of sexual maturation and reproduction by integrating environmental information with developmental and endocrine status. The European eel Anguilla anguilla is an important species in which to better understand the neuroendocrine factors that control reproduction because it is an endangered species, has a complex life cycle that includes two extreme long distance migrations with both freshwater and seawater stages and because it occupies a key position within the teleost phylogeny. At present, mature eels have never been caught in the wild and little is known about most aspects of reproduction in A. anguilla. The goal of this study was to identify genes that may be involved in sexual maturation in experimentally matured eels. For this, we used microarrays to compare the gene expression profiles of sexually mature to immature males. Results: Using a false discovery rate of 0.05, a total of 1,497 differentially expressed genes were identified. Of this set, 991 were expressed at higher levels in brains (forebrain and midbrain) of mature males while 506 were expressed at lower levels relative to brains of immature males. The set of up-regulated genes includes genes involved in neuroendocrine processes, cell-cell signaling, neurogenesis and development. Interestingly, while genes involved in immune system function were down-regulated in the brains of mature males, changes in the expression levels of several receptors and channels were observed suggesting that some rewiring is occurring in the brain at sexual maturity. Conclusions: This study shows that the brains of eels undergo major changes at the molecular level at sexual maturity that may include re-organization at the cellular level. Here, we have defined a set of genes that help to understand the molecular mechanisms controlling reproduction in eels. Some of these genes have previously described functions while many others have roles that have yet to be characterized in a reproductive context. Since most of the genes examined here have orthologs in other vertebrates, the results of this study will contribute to the body of knowledge concerning reproduction in vertebrates as well as to an improved understanding of eel biology.
- Development and validation of a gene expression oligo microarray for the gilthead sea bream (Sparus aurata)Publication . Ferraresso, Serena; Vitulo, Nicola; Mininni, Alba N.; Romualdi, Chiara; Cardazzo, Barbara; Negrisolo, Enrico; Reinhardt, Richard; Canario, Adelino V. M.; Patarnello, T.; Bargelloni, LucaAquaculture represents the most sustainable alternative of seafood supply to substitute for the declining marine fisheries, but severe production bottlenecks remain to be solved. The application of genomic technologies offers much promise to rapidly increase our knowledge on biological processes in farmed species and overcome such bottlenecks. Here we present an integrated platform for mRNA expression profiling in the gilthead sea bream (Sparus aurata), a marine teleost of great importance for aquaculture.
- Development of an oligo DNA microarray for the European sea bass and its application to expression profiling of jaw deformityPublication . Ferraresso, Serena; Milan, Massimo; Pellizzari, Caterina; Vitulo, Nicola; Reinhardt, Richard; Canario, Adelino V. M.; Patarnello, T.; Bargelloni, LucaAbstract Background The European sea bass (Dicentrarchus labrax) is a marine fish of great importance for fisheries and aquaculture. Functional genomics offers the possibility to discover the molecular mechanisms underlying productive traits in farmed fish, and a step towards the application of marker assisted selection methods in this species. To this end, we report here on the development of an oligo DNA microarray for D. labrax. Results A database consisting of 19,048 unique transcripts was constructed, of which 12,008 (63%) could be annotated by similarity and 4,692 received a GO functional annotation. Two non-overlapping 60mer probes were designed for each unique transcript and in-situ synthesized on glass slides using Agilent SurePrint™ technology. Probe design was positively completed for 19,035 target clusters; the oligo microarray was then applied to profile gene expression in mandibles and whole-heads of fish affected by prognathism, a skeletal malformation that strongly affects sea bass production. Statistical analysis identified 242 transcripts that are significantly down-regulated in deformed individuals compared to normal fish, with a significant enrichment in genes related to nervous system development and functioning. A set of genes spanning a wide dynamic range in gene expression level were selected for quantitative RT-PCR validation. Fold change correlation between microarray and qPCR data was always significant. Conclusions The microarray platform developed for the European sea bass has a high level of flexibility, reliability, and reproducibility. Despite the well known limitations in achieving a proper functional annotation in non-model species, sufficient information was obtained to identify biological processes that are significantly enriched among differentially expressed genes. New insights were obtained on putative mechanisms involved on mandibular prognathism, suggesting that bone/nervous system development might play a role in this phenomenon.
- European sea bass genome and its variation provide insights into adaptation to euryhalinity and speciationPublication . Tine, Mbaye; Kuhl, Heiner; Gagnaire, Pierre-Alexandre; Louro, Bruno; Desmarais, Erick; Martins, Rute S. T.; Hecht, Jochen; Knaust, Florian; Belkhir, Khalid; Klages, Sven; Dieterich, Roland; Stueber, Kurt; Piferrer, Francesc; Guinand, Bruno; Bierne, Nicolas; Volckaert, Filip A. M.; Bargelloni, Luca; Power, Deborah M.; Bonhomme, Francois; Canario, Adelino V. M.; Reinhardt, RichardThe European sea bass (Dicentrarchus labrax) is a temperate-zone euryhaline teleost of prime importance for aquaculture and fisheries. This species is subdivided into two naturally hybridizing lineages, one inhabiting the north-eastern Atlantic Ocean and the other the Mediterranean and Black seas. Here we provide a high-quality chromosome-scale assembly of its genome that shows a high degree of synteny with the more highly derived teleosts. We find expansions of gene families specifically associated with ion and water regulation, highlighting adaptation to variation in salinity. We further generate a genome-wide variation map through RAD-sequencing of Atlantic and Mediterranean populations. We show that variation in local recombination rates strongly influences the genomic landscape of diversity within and differentiation between lineages. Comparing predictions of alternative demographic models to the joint allele-frequency spectrum indicates that genomic islands of differentiation between sea bass lineages were generated by varying rates of introgression across the genome following a period of geographical isolation.
- A gene-based radiation hybrid map of the gilthead sea bream Sparus aurata refines and exploits conserved synteny with Tetraodon nigroviridisPublication . Sarropoulou, Elena; Franch, Rafaella; Louro, Bruno; Power, Deborah; Bargelloni, Luca; Magoulas, Antonio; Senger, Fabrice; Kotoulas, Georgios; Geisler, RobertBackground: Comparative teleost studies are of great interest since they are important in aquaculture and in evolutionary issues. Comparing genomes of fully sequenced model fish species with those of farmed fish species through comparative mapping offers shortcuts for quantitative trait loci (QTL) detections and for studying genome evolution through the identification of regions of conserved synteny in teleosts. Here a comparative mapping study is presented by radiation hybrid (RH) mapping genes of the gilthead sea bream Sparus aurata, a non-model teleost fish of commercial and evolutionary interest, as it represents the worldwide distributed species-rich family of Sparidae. Results: An additional 74 microsatellite markers and 428 gene-based markers appropriate for comparative mapping studies were mapped on the existing RH map of Sparus aurata. The anchoring of the RH map to the genetic linkage map resulted in 24 groups matching the karyotype of Sparus aurata. Homologous sequences to Tetraodon were identified for 301 of the gene-based markers positioned on the RH map of Sparus aurata. Comparison between Sparus aurata RH groups and Tetraodon chromosomes (karyotype of Tetraodon consists of 21 chromosomes) in this study reveals an unambiguous one-to-one relationship suggesting that three Tetraodon chromosomes correspond to six Sparus aurata radiation hybrid groups. The exploitation of this conserved synteny relationship is furthermore demonstrated by in silico mapping of gilthead sea bream expressed sequence tags (EST) that give a significant similarity hit to Tetraodon. Conclusion: The addition of primarily gene-based markers increased substantially the density of the existing RH map and facilitated comparative analysis. The anchoring of this gene-based radiation hybrid map to the genome maps of model species broadened the pool of candidate genes that mainly control growth, disease resistance, sex determination and reversal, reproduction as well as environmental tolerance in this species, all traits of great importance for QTL mapping and marker assisted selection. Furthermore this comparative mapping approach will facilitate to give insights into chromosome evolution and into the genetic make up of the gilthead sea bream.
- A genetic linkage map of the hermaphrodite teleost fish Sparus aurata L.Publication . Franch, Rafaella; Louro, Bruno; Tsalavouta, Matina; Chatziplis, Dimitris; Tsigenopoulos, C.; Sarropoulou, Elena; Antonello, Jenny; Magoulas, Andonis; Mylonas, Constantinos C.; Babbucci, Massimiliano; Patarnello, T.; Power, Deborah; Kotoulas, Georgios; Bargelloni, LucaThe gilthead sea bream (Sparus aurata L.) is a marine fish of great importance for fisheries and aquaculture. It has also a peculiar sex-determination system, being a protandrous hermaphrodite. Here we report the construction of a first-generation genetic linkage map for S. aurata, based on 204 microsatellite markers. Twenty-six linkage groups (LG) were found. The total map length was 1241.9 cM. The ratio between sex-specific map lengths was 1:1.2 (male:female). Comparison with a preliminary radiation hybrid (RH) map reveals a good concordance, as all markers located in a single LG are located in a single RH group, except for Ad-25 and CId-31. Comparison with the Tetraodon nigroviridis genome revealed a considerable number of evolutionary conserved regions (ECRs) between the two species. The mean size of ECRs was 182 bp (sequence identity 60–90%). Forty-one ECRs have a known chromosomal location in the pufferfish genome. Despite the limited number of anchoring points, significant syntenic relationships were found. The linkage map presented here provides a robust comparative framework for QTL analysis in S. aurata and is a step toward the identification of genetic loci involved both in the determination of economically important traits and in the individual timing of sex reversal.
- Genomic analysis of Sparus aurata reveals the evolutionary dynamics of sex-biased genes in a sequential hermaphrodite fishPublication . Pauletto, Marianna; Manousaki, Tereza; Ferraresso, Serena; Babbucci, Massimiliano; Tsakogiannis, Alexandros; Louro, Bruno; Vitulo, Nicola; Quoc, Viet Ha; Carraro, Roberta; Bertotto, Daniela; Franch, Rafaella; Maroso, Francesco; Aslam, Muhammad L.; Sonesson, Anna K.; Simionati, Barbara; Malacrida, Giorgio; Cestaro, Alessandro; Caberlotto, Stefano; Sarropoulou, Elena; Mylonas, Costantinos C.; Power, Deborah; Patarnello, Tomaso; Canario, Adelino; Tsigenopoulos, Costas; Bargelloni, LucaSexual dimorphism is a fascinating subject in evolutionary biology and mostly results from sex-biased expression of genes, which have been shown to evolve faster in gonochoristic species. We report here genome and sex-specific transcriptome sequencing of Sparus aurata, a sequential hermaphrodite fish. Evolutionary comparative analysis reveals that sex-biased genes in S. aurata are similar in number and function, but evolved following strikingly divergent patterns compared with gonochoristic species, showing overall slower rates because of stronger functional constraints. Fast evolution is observed only for highly ovary-biased genes due to female-specific patterns of selection that are related to the peculiar reproduction mode of S. aurata, first maturing as male, then as female. To our knowledge, these findings represent the first genome-wide analysis on sex-biased loci in a hermaphrodite vertebrate species, demonstrating how having two sexes in the same individual profoundly affects the fate of a large set of evolutionarily relevant genes.
- Genomics toolbox for farmed fishPublication . Canario, Adelino V. M.; Bargelloni, Luca; Volckaert, F.; Houston, R. D.; Massault, C.; Guiguen, YannThe last decade has seen dramatic technological developments which have resulted in massive production of genome and transcriptome sequence information from a variety of organisms, at all levels of complexity, including several fish species. While hitherto most applications of genomic data have been in biomedicine, biotechnology, and agriculture, there is a growing interest in applying genomic approaches to animal production. This review will describe the basic tools and resources that are currently available and how they are being used for advancing aquaculture. Finally, it will discuss current trends that are likely to have some impact for the benefit of aquaculture.
- Global analysis of gene expression in mineralizing fish vertebra-derived cell lines: new insights into anti-mineralogenic effect of vanadatePublication . Tiago, Daniel; Laizé, Vincent; Bargelloni, Luca; Ferraresso, Serena; Romualdi, Chiara; Cancela, LeonorAbstract Background Fish has been deemed suitable to study the complex mechanisms of vertebrate skeletogenesis and gilthead seabream (Sparus aurata), a marine teleost with acellular bone, has been successfully used in recent years to study the function and regulation of bone and cartilage related genes during development and in adult animals. Tools recently developed for gilthead seabream, e.g. mineralogenic cell lines and a 4 × 44K Agilent oligo-array, were used to identify molecular determinants of in vitro mineralization and genes involved in anti-mineralogenic action of vanadate. Results Global analysis of gene expression identified 4,223 and 4,147 genes differentially expressed (fold change - FC > 1.5) during in vitro mineralization of VSa13 (pre-chondrocyte) and VSa16 (pre-osteoblast) cells, respectively. Comparative analysis indicated that nearly 45% of these genes are common to both cell lines and gene ontology (GO) classification is also similar for both cell types. Up-regulated genes (FC > 10) were mainly associated with transport, matrix/membrane, metabolism and signaling, while down-regulated genes were mainly associated with metabolism, calcium binding, transport and signaling. Analysis of gene expression in proliferative and mineralizing cells exposed to vanadate revealed 1,779 and 1,136 differentially expressed genes, respectively. Of these genes, 67 exhibited reverse patterns of expression upon vanadate treatment during proliferation or mineralization. Conclusions Comparative analysis of expression data from fish and data available in the literature for mammalian cell systems (bone-derived cells undergoing differentiation) indicate that the same type of genes, and in some cases the same orthologs, are involved in mechanisms of in vitro mineralization, suggesting their conservation throughout vertebrate evolution and across cell types. Array technology also allowed identification of genes differentially expressed upon exposure of fish cell lines to vanadate and likely involved in its anti-mineralogenic activity. Many were found to be unknown or they were never associated to bone homeostasis previously, thus providing a set of potential candidates whose study will likely bring insights into the complex mechanisms of tissue mineralization and bone formation.
