Browsing by Author "Bjorkman, A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Cytochrome 1A1 and 1B1 gene diversity in the Zanzibar islandsPublication . Cavaco, I.; Piedade, R.; Msellem, M. I.; Bjorkman, A.; Gil, José PedroAmodiaquine (AQ) is a 4-aminoquinoline widely used in the treatment of malaria as part of the artemisinin combination therapy (ACT). AQ is metabolised towards its main metabolite desethylamodiaquine mainly by cytochrome P450 2C8 (CYP2C8). CYP1A1 and CYP1B1 play a minor role in the metabolism but they seem to be significantly involved in the formation of the short-lived quinine-imine. To complete the genetic variation picture of the main genes involved in AQ metabolism in the Zanzibar population, previously characterised for CYP2C8, we analysed in this study CYP1A1 and CYP1B1 main genetic polymorphisms. The results obtained show a low frequency of the CYP1A1*2B/C allele (2.4%) and a high frequency of CYP1B1*6 (approximately 42%) followed by CYP1B1*2 (approximately 27%) in Zanzibar islands. Genotype data for CYP1A1 and CYP1B1 show a low incidence of fast metabolisers, revealing a relatively safe genetic background in Zanzibars population regarding the appearance of adverse effects.
- pfmdr1 amplification is related to increased Plasmodium falciparum In Vitro sensitivity to the Bisquinoline PiperaquinePublication . Veiga, M. I.; Ferreira, P. E.; Malmberg, M.; Jornhagen, L.; Bjorkman, A.; Nosten, F.; Gil, J. P.The 4-aminoquinoline bisquinoline piperaquine is an important partner drug in one of the presently recommended artemisinin combination therapies. Recent clinical trials have confirmed its high efficacy in combination with dihydroartemisinin. Resistance to piperaquine alone has, however, been documented. Amplification in copy number of the Plasmodium falciparum multidrug resistance locus on chromosome 5, containing the pfmdr1 gene, has been shown to confer resistance to structurally unrelated antimalarials. Through the determination of the 50% inhibitory concentrations (IC(50)s) and IC(90)s for piperaquine and chloroquine in a set of 46 adapted P. falciparum cultures originating from the Thai-Burmese border, we have characterized the regions around the pfmdr1 gene and identified a significant association between the presence of pfmdr1 duplications and enhanced sensitivity to piperaquine (P = 0.005 for IC50 and P = 0.002 for IC90) and chloroquine, reaching statistical significance at IC(90)s (P = 0.026). These results substantiate the potential importance of pfmdr1 copy number amplifications in the efficacy of the combination therapy piperaquine-dihydroartemisinin. It supports the rational use of 4-aminoquinolines and artemisinin-based compounds, as they independently select for mutually incompatible combinations of mutations.