Browsing by Author "Brickle, Paul"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- From settlers to subspecies: genetic differentiation in Commerson’s dolphins between South America and the Kerguelen IslandsPublication . Kraft, Sebastian; Pérez-Alvarez, MJosé; Olavarría, Carlos; Moraga, Rodrigo; Baker, C. Scott; Steel, Debbie; Tixier, Paul; Guinet, Christophe; Viricel, Amelia; Brickle, Paul; Costa, Marina; Crespo, Enrique; Durante, Cristian; Loizaga, Rocio; Poulin, ElieCommerson’s dolphins (Cephalorhynchus commersonii) are separated into the subspecies C. c. commersonii, found along southern South America (SA) and the Falkland Islands/Islas Malvinas (FI/IM), and C. c. kerguelenensis, restricted to the subantarctic Kerguelen Islands (KI). Following the dispersal model proposed for the genus, the latter is thought to have originated from SA after a long-distance dispersal event. To evaluate this biogeographic scenario, a distribution-wide, balanced sampling of mitochondrial DNA (mtDNA) control region sequences was designed. New tissue samples from southern Chile, Argentina, FI/IM, and KI were added to published sequences from SA and KI, for a total of 256 samples. Genetic diversity indices, genetic and phylogeographic structure, and migration rates were calculated. One haplotype was shared between subspecies, with which all haplotypes of C. c. kerguelenensis formed a distinct group in the haplotype network. A new haplotype for C. c. kerguelenensis is reported. Differentiation in haplotype frequencies was found among localities within the distribution of C. c. commersonii, yet the phylogeographic signal was only statistically significant between subspecies. Coalescent-based historical gene flow estimations indicated migration between the northern and southern portions of the species’ range in SA as well as between SA and the FI/IM, but not between these and the KI. The net nucleotide divergence between dolphins from SA and the FI/IM was lower than the recommended threshold value suggested for delimiting subspecies, unlike that found between C. c. commersonii and C. c. kerguelenensis. The results are consistent with the model of post-glacial colonization of KI by South American C. commersonii, followed by an ongoing divergence process and subspecies status. Thus, C. c. kerguelenensis may represent the most recent diversification step of Cephalorhynchus, where isolation from their source population is driving a process of incipient speciation.
- Past climate-driven range shifts structuring intraspecific biodiversity levels of the giant kelp (Macrocystis pyrifera) at global scalesPublication . Assis, Jorge; Alberto, Filipe; Macaya, Erasmo C.; Coelho, Nelson; Faugeron, Sylvain; Pearson, Gareth; Ladah, Lydia; Reed, Daniel C.; Raimondi, Peter; Mansilla, Andrés; Brickle, Paul; Zuccarello, Giuseppe C.; Serrao, EsterThe paradigm of past climate-driven range shifts structuring the distribution of marine intraspecific biodiversity lacks replication in biological models exposed to comparable limiting conditions in independent regions. This may lead to confounding effects unlinked to climate drivers. We aim to fill in this gap by asking whether the global distribution of intraspecific biodiversity of giant kelp (Macrocystis pyrifera) is explained by past climate changes occurring across the two hemispheres. We compared the species' population genetic diversity and structure inferred with microsatellite markers, with range shifts and long-term refugial regions predicted with species distribution modelling (SDM) from the last glacial maximum (LGM) to the present. The broad antitropical distribution of Macrocystis pyrifera is composed by six significantly differentiated genetic groups, for which current genetic diversity levels match the expectations of past climate changes. Range shifts from the LGM to the present structured low latitude refugial regions where genetic relics with higher and unique diversity were found (particularly in the Channel Islands of California and in Peru), while post-glacial expansions following similar to 40% range contraction explained extensive regions with homogenous reduced diversity. The estimated effect of past climate-driven range shifts was comparable between hemispheres, largely demonstrating that the distribution of intraspecific marine biodiversity can be structured by comparable evolutionary forces across the global ocean. Additionally, the differentiation and endemicity of regional genetic groups, confers high conservation value to these localized intraspecific biodiversity hotspots of giant kelp forests.