Browsing by Author "Caldon, Matteo"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Evolution of craniofacial shape in relation to sexual dimorphism in theropithecus and papioPublication . Ossorio, Ángeles; Figueroa-Torrejón, Ambra; Buston, Rodrigo; Caldon, Matteo; Mathe, Jacinto; Doria, Giuliano; Gippoliti, Spartaco; Volta, Antonella; Silva, María Joana Ferreira da; Bobe, René; Carvalho, Susana; Capelli, Cristian; Martínez, Felipe I.Introduction: Sexual dimorphism in cranial morphology is a significant aspect of primate evolution, providing insights into evolutionary pressures and mating systems in different species. This study focuses on cranial sexual dimorphism in Papio and Theropithecus, two closely related genera within the tribe Papionini.Methods: Using geometric morphometric techniques, we analyzed 570 cranial specimens from both genera, with data sourced from various studies and repositories. Thirty craniofacial landmarks were defined and analyzed through Geometric Morphometrics tools to evaluate shape variation.Results: Our findings reveal distinct morphological clusters for each genus and sex, with Papio and Theropithecus exhibiting significant sexual dimorphism. The results distinguish genera and sex-based groups, indicating differential impacts of size on shape across groups. The findings suggest that while sexual dimorphism is stable in magnitude within each genus, the specific morphological manifestations differ.Discussion: This research advances our understanding of the evolutionary mechanisms driving sexual dimorphism and emphasizes the need for further studies to explore the genetic and environmental factors influencing these differences. The innovative approach and comprehensive dataset provide a robust framework for future investigations into primate cranial morphology and its evolutionary implications.
- Genomic variation in baboons from central Mozambique unveils complex evolutionary relationships with other Papio speciesPublication . Santander, Cindy; Molinaro, Ludovica; Mutti, Giacomo; Martínez, Felipe I.; Mathe, Jacinto; Ferreira da Silva, Maria J.; Caldon, Matteo; Oteo-Garcia, Gonzalo; Aldeias, Vera; Archer, Will; Bamford, Marion; Biro, Dora; Bobe, René; Braun, David R.; Hammond, Philippa; Lüdecke, Tina; Pinto, Maria J.; Meira Paulo, Luis; Stalmans, Marc; Regala, Frederico; Bertolini, Francesco; Moltke, Ida; Raveane, Alessandro; Pagani, Luca; Carvalho, Susana; Capelli, CristianBackground Gorongosa National Park in Mozambique hosts a large population of baboons, numbering over 200 troops. Gorongosa baboons have been tentatively identified as part of Papio ursinus on the basis of previous limited morphological analysis and a handful of mitochondrial DNA sequences. However, a recent morphological and morphometric analysis of Gorongosa baboons pinpointed the occurrence of several traits intermediate between P. ursinus and P. cynocephalus, leaving open the possibility of past and/or ongoing gene flow in the baboon population of Gorongosa National Park. In order to investigate the evolutionary history of baboons in Gorongosa, we generated high and low coverage whole genome sequence data of Gorongosa baboons and compared it to available Papio genomes. Results We confirmed that P. ursinus is the species closest to Gorongosa baboons. However, the Gorongosa baboon genomes share more derived alleles with P. cynocephalus than P. ursinus does, but no recent gene flow between P. ursinus and P. cynocephalus was detected when available Papio genomes were analyzed. Our results, based on the analysis of autosomal, mitochondrial and Y chromosome data, suggest complex, possibly male-biased, gene flow between Gorongosa baboons and P. cynocephalus, hinting to direct or indirect contributions from baboons belonging to the “northern” Papio clade, and signal the presence of population structure within P. ursinus. Conclusions The analysis of genome data generated from baboon samples collected in central Mozambique highlighted a complex set of evolutionary relationships with other baboons. Our results provided new insights in the population dynamics that have shaped baboon diversity.
