Browsing by Author "Cunliffe, Michael"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- European marine omics biodiversity observation network: a strategic outline for the implementation of omics approaches in ocean observationPublication . Santi, Ioulia; Beluche, Odette; Beraud, Mélanie; Buttigieg, Pier Luigi; Casotti, Raffaella; Cox, Cymon J.; Cunliffe, Michael; Davies, Neil; de Cerio, Oihane Diaz; Exter, Katrina; Kervella, Anne Emmanuelle; Kotoulas, Georgios; Lagaisse, Rune; Laroquette, Arnaud; Louro, Bruno; Not, Fabrice; Obst, Matthias; Pavloudi, Christina; Poulain, Julie; Præbel, Kim; Vanaverbeke, Jan; Pade, NicolasMarine ecosystems, ranging from coastal seas and wetlands to the open ocean, accommodate a wealth of biological diversity from small microorganisms to large mammals. This biodiversity and its associated ecosystem function occurs across complex spatial and temporal scales and is not yet fully understood. Given the wide range of external pressures on the marine environment, this knowledge is crucial for enabling effective conservation measures and defining the limits of sustainable use. The development and application of omics-based approaches to biodiversity research has helped overcome hurdles, such as allowing the previously hidden community of microbial life to be identified, thereby enabling a holistic view of an entire ecosystem's biodiversity and functioning. The potential of omics-based approaches for marine ecosystems observation is enormous and their added value to ecosystem monitoring, management, and conservation is widely acknowledged. Despite these encouraging prospects, most omics-based studies are short-termed and typically cover only small spatial scales which therefore fail to include the full spatio-temporal complexity and dynamics of the system. To date, few attempts have been made to establish standardised, coordinated, broad scaled, and long-term omics observation networks. Here we outline the creation of an omics-based marine observation network at the European scale, the European Marine Omics Biodiversity Observation Network (EMO BON). We illustrate how linking multiple existing individual observation efforts increases the observational power in large-scale assessments of status and change in biodiversity in the oceans. Such large-scale observation efforts have the added value of cross-border cooperation, are characterised by shared costs through economies of scale, and produce structured, comparable data. The key components required to compile reference environmental datasets and how these should be linked are major challenges that we address.
- Priorities for ocean microbiome researchPublication . Abreu, Andre; Bourgois, Etienne; Gristwood, Adam; Troublé, Romain; Acinas, Silvia G.; Bork, Peer; Boss, Emmanuel; Bowler, Chris; Budinich, Marko; Chaffron, Samuel; de Vargas, Colomban; Delmont, Tom O.; Eveillard, Damien; Guidi, Lionel; Iudicone, Daniele; Kandels, Stephanie; Morlon, Hélène; Lombard, Fabien; Pepperkok, Rainer; Karlusich, Juan José Pierella; Piganeau, Gwenael; Régimbeau, Antoine; Sommeria-Klein, Guilhem; Stemmann, Lars; Sullivan, Matthew B.; Sunagawa, Shinichi; Wincker, Patrick; Zablocki, Olivier; Arendt, Detlev; Bilic, Josipa; Finn, Robert; Heard, Edith; Rouse, Brendan; Vamathevan, Jessica; Casotti, Raffaella; Cancio, Ibon; Cunliffe, Michael; Kervella, Anne Emmanuelle; Kooistra, Wiebe H. C. F.; Obst, Matthias; Pade, Nicolas; Power, Deborah; Santi, Ioulia; Tsagaraki, Tatiana Margo; Vanaverbeke, JanStudying the ocean microbiome can inform international policies related to ocean governance, tackling climate change, ocean acidification and pollution, and can help promote achievement of multiple Sustainable Development Goals. Microbial communities have essential roles in ocean ecology and planetary health. Microbes participate in nutrient cycles, remove huge quantities of carbon dioxide from the air and support ocean food webs. The taxonomic and functional diversity of the global ocean microbiome has been revealed by technological advances in sampling, DNA sequencing and bioinformatics. A better understanding of the ocean microbiome could underpin strategies to address environmental and societal challenges, including achievement of multiple Sustainable Development Goals way beyond SDG 14 'life below water'. We propose a set of priorities for understanding and protecting the ocean microbiome, which include delineating interactions between microbiota, sustainably applying resources from oceanic microorganisms and creating policy- and funder-friendly ocean education resources, and discuss how to achieve these ambitious goals.
- The future of the northeast Atlantic benthic flora in a high CO2 worldPublication . Brodie, Juliet; Williamson, Christopher J.; Smale, Dan A.; Kamenos, Nicholas A.; Mieszkowska, Nova; Santos, Rui; Cunliffe, Michael; Steinke, Michael; Yesson, Christopher; Anderson, Kathryn M.; Asnaghi, Valentina; Brownlee, Colin; Burdett, Heidi L.; Burrows, Michael T.; Collins, Sinead; Donohue, Penelope J. C.; Harvey, Ben; Foggo, Andrew; Noisette, Fanny; Nunes, Joana; Ragazzola, Federica; Raven, John A.; Schmidt, Daniela N.; Suggett, David; Teichberg, Mirta; Hall-Spencer, JasonSeaweed and seagrass communities in the northeast Atlantic have been profoundly impacted by humans, and the rate of change is accelerating rapidly due to runaway CO2 emissions and mounting pressures on coastlines associated with human population growth and increased consumption of finite resources. Here, we predict how rapid warming and acidification are likely to affect benthic flora and coastal ecosystems of the northeast Atlantic in this century, based on global evidence from the literature as interpreted by the collective knowledge of the authorship. We predict that warming will kill off kelp forests in the south and that ocean acidification will remove maerl habitat in the north. Seagrasses will proliferate, and associated epiphytes switch from calcified algae to diatoms and filamentous species. Invasive species will thrive in niches liberated by loss of native species and spread via exponential development of artificial marine structures. Combined impacts of seawater warming, ocean acidification, and increased storminess may replace structurally diverse seaweed canopies, with associated calcified and noncalcified flora, with simple habitats dominated by noncalcified, turf-forming seaweeds.