Browsing by Author "Desprat, Stephanie"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- Pollen from the deep-sea: A breakthrough in the mystery of the ice agesPublication . Goni, Maria F. Sanchez; Desprat, Stephanie; Fletcher, William J.; Morales-Molino, Cesar; Naughton, Filipa; Oliveira, Dulce; Urrego, Dunia H.; Zorzi, CoraliePollen from deep-sea sedimentary sequences provides an integrated regional reconstruction of vegetation and climate (temperature, precipitation, and seasonality) on the adjacent continent. More importantly, the direct correlation of pollen, marine and ice indicators allows comparison of the atmospheric climatic changes that have affected the continent with the response of the Earth's other reservoirs, i.e., the oceans and cryosphere, without any chronological uncertainty. The study of long continuous pollen records from the European margin has revealed a changing and complex interplay between European climate, North Atlantic sea surface temperatures (SSTs), ice growth and decay, and high-and low-latitude forcing at orbital and millennial timescales. These records have shown that the amplitude of the last five terrestrial interglacials was similar above 40 degrees N, while below 40 degrees N their magnitude differed due to precession-modulated changes in seasonality and, particularly, winter precipitation. These records also showed that vegetation response was in dynamic equilibrium with rapid climate changes such as the Dangaard-Oeschger (D-O) cycles and Heinrich events, similar in magnitude and velocity to the ongoing global warming. However, the magnitude of the millennial-scale warming events of the last glacial period was regionally-specific. Precession seems to have imprinted regions below 40 degrees N while obliquity, which controls average annual temperature, probably mediated the impact of D-O warming events above 40 degrees N. A decoupling between high-and low-latitude climate was also observed within last glacial warm (Greenland interstadials) and cold phases (Greenland stadials). The synchronous response of western European vegetation/climate and eastern North Atlantic SSTs to D-O cycles was not a pervasive feature throughout the Quaternary. During periods of ice growth such as MIS 5a/4, MIS 11c/b and MIS 19c/b, repeated millennial-scale cold-air/warm-sea decoupling events occurred on the European margin superimposed to a long-term air-sea decoupling trend. Strong air-sea thermal contrasts promoted the production of water vapor that was then transported northward by the westerlies and fed ice sheets. This interaction between long-term and shorter timescale climatic variability may have amplified insolation decreases and thus explain the Ice Ages. This hypothesis should be tested by the integration of stochastic processes in Earth models of intermediate complexity.
- Pollen in marine sedimentary archives, a key for climate studies: the example of past warm periodsPublication . Desprat, Stephanie; Oliveira, Dulce; Naughton, Filipa; Sanchez Goni, Maria FernandaThe interglacials of the last 800,000 years are all warm periods comparable to the current interglacial, called the Holocene. However, their intensity, duration, variability and regional expression are different as the result of different astronomical and greenhouse gases forcing. The work presented here focuses on the regional expression of these interglacials in southwestern Europe, and it is based on recent studies using pollen from Iberian margin sedimentary sequences that enables a direct comparison of atmospheric and marine processes. This work highlights the diversity of these interglacials in southwestern Europe in terms of duration as well as vegetation and climatic variability, in particular in southwestern Iberia where changes in precipitation play an important role. This work additionally allows discussing mechanisms involved in glacial inception during orbital analogs of the current interglacial (i.e. marine isotopic stages 19c and 11c).
- Pronounced northward shift of the westerlies during MIS 17 leading to the strong 100-kyr ice age cyclesPublication . Goni, Maria Fernanda Sanchez; Ferretti, Patrizia; Polanco-Martinez, Josue M.; Rodrigues, Teresa; Alonso-Garcia, Montserrat; Javier Rodriguez-Tovar, Francisco; Dorador, Javier; Desprat, StephanieThe MIS 17 interglacial, similar to 715-675 ka, marks the end of the Mid-Pleistocene Transition as intensified, long and asymmetrical 100-kyr ice age cycles became eminently established. Increasing arrival of moisture to the Northern Hemisphere high latitudes, resulting from the northwestward migration of the Subpolar Front and the intensification of the Norwegian Greenland Seas (NGS) convection, has been put forward to explain the emergence of this quasi-periodic 100-kyr cycle. However, testing this hypothesis is problematic with the available North Atlantic precipitation data. Here we present new pollen-based quantitative seasonal climate reconstructions from the southwestern Iberian margin that track changes in the position and intensity of the westerlies. Our data compared to changes in North Atlantic deep and surface water conditions show that MIS 17 interglacial was marked by three major changes in the direction and strength of the westerlies tightly linked to oceanographic changes. In particular, we report here for the first time a drastic two-steps northward shift of the westerlies centered at similar to 693 ka that ended up with the sustained precipitation over southern European. This atmospheric reorganization was associated with northwestward migration of the Subpolar Front, strengthening of the NGS deep water formation and cooling of the western North Atlantic region. This finding points to the substantial arrival of moisture to the Northern Hemisphere high latitudes at the time of the decrease in summer energy and insolation contributing to the establishment of strong 100-kyr cycles. (C) 2019 Elsevier B.V. All rights reserved.
- The ACER pollen and charcoal database: a global resource to document vegetation and fire response to abrupt climate changes during the last glacial periodPublication . Goni, Maria F. Sanchez; Desprat, Stephanie; Daniau, Anne-Laure; Bassinot, Frank C.; Polanco-Martinez, Josue M.; Harrison, Sandy P.; Allen, Judy R. M.; Anderson, R. Scott; Behling, Hermann; Bonnefille, Raymonde; Burjachs, Francesc; Carrion, Jose S.; Cheddadi, Rachid; Clark, James S.; Combourieu-Nebout, Nathalie; Mustaphi, Colin. J. Courtney; Debusk, Georg H.; Dupont, Lydie M.; Finch, Jemma M.; Fletcher, William J.; Giardini, Marco; Gonzalez, Catalina; Gosling, William D.; Grigg, Laurie D.; Grimm, Eric C.; Hayashi, Ryoma; Helmens, Karin; Heusser, Linda E.; Hill, Trevor; Hope, Geoffrey; Huntley, Brian; Igarashi, Yaeko; Irino, Tomohisa; Jacobs, Bonnie; Jimenez-Moreno, Gonzalo; Kawai, Sayuri; Kershaw, A. Peter; Kumon, Fujio; Lawson, Ian T.; Ledru, Marie-Pierre; Lezine, Anne-Marie; Liew, Ping Mei; Magri, Donatella; Marchant, Robert; Margari, Vasiliki; Mayle, Francis E.; McKenzie, G. Merna; Moss, Patrick; Mueller, Stefanie; Mueller, Ulrich C.; Naughton, Filipa; Newnham, Rewi M.; Oba, Tadamichi; Perez-Obiol, Ramon; Pini, Roberta; Ravazzi, Cesare; Roucoux, Katy H.; Rucina, Stephen M.; Scott, Louis; Takahara, Hikaru; Tzedakis, Polichronis C.; Urrego, Dunia H.; van Geel, Bas; Valencia, B. Guido; Vandergoes, Marcus J.; Vincens, Annie; Whitlock, Cathy L.; Willard, Debra A.; Yamamoto, MasanobuQuaternary records provide an opportunity to examine the nature of the vegetation and fire responses to rapid past climate changes comparable in velocity and magnitude to those expected in the 21st-century. The best documented examples of rapid climate change in the past are the warming events associated with the Dansgaard-Oeschger (D-O) cycles during the last glacial period, which were sufficiently large to have had a potential feedback through changes in albedo and greenhouse gas emissions on climate. Previous reconstructions of vegetation and fire changes during the D-O cycles used independently constructed age models, making it difficult to compare the changes between different sites and regions. Here, we present the ACER (Abrupt Climate Changes and Environmental Responses) global database, which includes 93 pollen records from the last glacial period (73-15 ka) with a temporal resolution better than 1000 years, 32 of which also provide charcoal records. A harmonized and consistent chronology based on radiometric dating (C-14, U-234/Th-230, optically stimulated luminescence (OSL), Ar-40/Ar-39-dated tephra layers) has been constructed for 86 of these records, although in some cases additional information was derived using common control points based on event stratigraphy. The ACER database compiles metadata including geospatial and dating information, pollen and charcoal counts, and pollen percentages of the characteristic biomes and is archived in Microsoft Access (TM) at https://doi. org/10.1594/PANGAEA. 870867.
- The complexity of millennial-scale variability in southwestern Europe during MIS 11Publication . Oliveira, Dulce; Desprat, Stephanie; Rodrigues, Teresa; Naughton, Filipa; Hodell, David; Trigo, Ricardo; Rufino, Marta; Lopes, Cristina; Abrantes, Fatima; Sanchez Goni, Maria FernandaClimatic variability of Marine Isotope Stage (MIS) 11 is examined using a new high-resolution direct land sea comparison from the SW Iberian margin Site U1385. This study, based on pollen and biomarker analyses, documents regional vegetation, terrestrial climate and sea surface temperature (SST) variability. Suborbital climate variability is revealed by a series of forest decline events suggesting repeated cooling and drying episodes in SW Iberia throughout MIS 11. Only the most severe events on land are coeval with SST decreases, under larger ice volume conditions. Our study shows that the diverse expression (magnitude, character and duration) of the millennial-scale cooling events in SW Europe relies on atmospheric and oceanic processes whose predominant role likely depends on baseline climate states. Repeated atmospheric shifts recalling the positive North Atlantic Oscillation mode, inducing dryness in SW Iberia without systematical SST changes, would prevail during low ice volume conditions. In contrast, disruption of the Atlantic meridional overturning circulation (AMOC), related to iceberg discharges, colder SST and increased hydrological regime, would be responsible for the coldest and driest episodes of prolonged duration in SW Europe. (C) 2016 University of Washington. Published by Elsevier Inc. All rights reserved.
- Unexpected weak seasonal climate in the western Mediterranean region during MIS 31, a high-insolation forced interglacialPublication . Oliveira, Dulce; Goni, Maria F. Sanchez; Naughton, Filipa; Polanco-Martinez, J. M.; Jiménez-Espejo, Francisco J.; Grimalt, Joan O.; Martrat, Belen; Voelker, Antje; Trigo, Ricardo; Hodell, David; Abrantes, Fatima; Desprat, StephanieMarine Isotope Stage 31 (MIS 31) is an important analogue for ongoing and projected global warming, yet key questions remain about the regional signature of its extreme orbital forcing and intra-interglacial variability. Based on a new direct land-sea comparison in SW Iberian margin IODP Site U1385 we examine the climatic variability between 1100 and 1050 ka including the "super interglacial" MIS 31, a period dominated by the 41-ky obliquity periodicity. Pollen and biomarker analyses at centennial-scale resolution provide new insights into the regional vegetation, precipitation regime and atmospheric and oceanic temperature variability on orbital and suborbital timescales. Our study reveals that atmospheric and SST warmth during MIS 31 was not exceptional in this region highly sensitive to precession. Unexpectedly, this warm stage stands out as a prolonged interval of a temperate and humid climate regime with reduced seasonality, despite the high insolation (precession minima values) forcing. We find that the dominant forcing on the long-term temperate forest development was obliquity, which may have induced a decrease in summer dryness and associated reduction in seasonal precipitation contrast. Moreover, this study provides the first evidence for persistent atmospheric millennial-scale variability during this interval with multiple forest decline events reflecting repeated cooling and drying episodes in SW Iberia. Our direct land-sea comparison shows that the expression of the suborbital cooling events on SW Iberian ecosystems is modulated by the predominance of high or low-latitude forcing depending on the glacial/interglacial baseline climate states. Severe dryness and air-sea cooling is detected under the larger ice volume during glacial MIS 32 and MIS 30. The extreme episodes, which in their climatic imprint are similar to the Heinrich events, are likely related to northern latitude ice-sheet instability and a disruption of the Atlantic Meridional Overturning Circulation (AMOC). In contrast, forest declines during MIS 31 are associated to neither SST cooling nor high-latitude freshwater forcing. Time-series analysis reveals a dominant cyclicity of about 6 ky in the temperate forest record, which points to a potential link with the fourth harmonic of precession and thus low-latitude insolation forcing. (C) 2017 Elsevier Ltd. All rights reserved.
