Browsing by Author "Ebadzad, G."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Quantitative RT-PCR analysis of differentially expressed genes in Quercus suber in response to Phytophthora cinnamomi infectionPublication . Ebadzad, G.; Cravador, A.cDNA-AFLP methodology was used to gain insight into gene fragments differentially present in the mRNA profiles of Quercus suber roots infected with zoospores of Phytophthora cinnamomi at different post challenge time points. Fifty-three transcript-derived fragments (TDFs) were identified and sequenced. Six candidate genes were selected based on their expression patterns and homology to genes known to play a role in defence. They encode a cinnamyl alcohol dehydrogenase2 (QsCAD2), a protein disulphide isomerase (QsPDI), a CC-NBS-LRR resistance protein (QsRPc), a thaumatin-like protein (QsTLP), a chitinase (QsCHI) and a 1,3-β-glucanase (QsGlu). Evaluation of the expression of these genes by quantitative polymerase chain reaction (qPCR) revealed that transcript levels of QsRPc, QsCHI, QsCAD2 and QsPDI increased during the first 24 h post-inoculation, while those of thaumatin-like protein decreased. No differential expression was observed for 1,3-β-glucanase (QsGlu).Four candidate reference genes, polymerase II (QsRPII), eukaryotic translation initiation factor 5A (QsEIF-5A), β-tubulin (QsTUB) and a medium subunit family protein of clathrin adaptor complexes (QsCACs) were assessed to determine the most stable internal references for qRT-PCR normalization in the Phytophthora-Q. suber pathosystem in root tissues. Those found to be more stable, QsRPII and QsCACs, were used as internal reference in the present work.Knowledge on the Quercus defence mechanisms against biotic stress is scarce. This study provides an insight into the gene profiling of a few important genes of Q. suber in response to P. cinnamomi infection contributing to the knowledge of the molecular interactions involving Quercus and root pathogens that can be useful in the future to understand the mechanisms underlying oak resistance to soil-borne oomycetes.
- Quercus suber – P. cinnamomi interaction: hypothetical molecular mechanism modelPublication . Coelho, A. C.; Horta, Marília; Ebadzad, G.; Cravador, A.Phytophthora cinnamomi Rands is involved in the decline and mortality of Quercus suber L. and Quercus ilex L. in Southern Europe, in particular in Portugal and Spain. The presence and spread of P. cinnamomi in these regions is a severe threat to these oak ecosystems leading to expectable severe consequences for the production of cork and acorns in the near future. Molecular mechanisms underlying oomycete-host interactions are poorly understood. As a first step to identify transcripts involved in the Quercus suber – Phytophthora cinnamomi interaction, we applied complementary deoxyribonucleic acidamplified fragment length polymorphism (cDNA-AFLP) methodology to cork oak seedlings infected with zoospores or mycelium of P. cinnamomi. Forty-four Quercus suber genes that were differentially expressed when exposed to Phytophthora cinnamomi were selected and sequenced. Several of these genes were fully sequenced and the deduced aminoacid sequences showed consistent homology with proteins involved in the defence mechanism of other plant species. These findings led to the design of a simplified hypothetical model that illustrates the initial events of the interaction between Q. suber and P. cinnamomi.
