Browsing by Author "Flores, Cintia"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Bioaccessibility of lipophilic and hydrophilic marine biotoxins in seafood: an in vitro digestion approachPublication . Alves, Ricardo N.; Rambla-Alegre, Maria; Braga, Ana Catarina; Maulvault, Ana L.; Barbosa, Vera; Campàs, Mònica; Reverté, Laia; Flores, Cintia; Caixach, Josep; Kilcoyne, Jane; Costa, Pedro Reis; Diogène, Jorge; Marques, AntónioThis study aimed to assess the bioaccessibility of different marine biotoxins in naturally contaminated shellfish and fish gonads using an in vitro digestion methodology. In general, hydrophilic toxins (domoic acid, paralytic shellfish poisoning toxins and tetrodotoxins) showed higher bioaccessibility than lipophilic ones (okadaic acid and azaspiracids). The bioaccessibility of toxins from the okadaic acid group ranged from 69% (raw European razor clams) to 74% (raw donax clams). Regarding azaspiracids, 47% of the initial content was bioaccessible in steamed blue mussel. As for hydrophilic toxins, 100% of the initial content was bioaccessible after digestion in raw shellfish and puffer fish gonads. The total tetrodotoxin bioaccessibility in puffer fish gonads decreased significantly after steaming. The profile of tetrodotoxins changed during the digestion process: TTX and 11-norTTX-6S-ol analogues decreased significantly after digestion, but the 5,6,11-trideoxy TTX analogue increased in both raw and steamed puffer fish gonads. These preliminary findings confirm the need to consider bioaccessibility data in future seafood risk assessment, as such information enables a more accurate and realistic estimation of potential seafood hazards, particularly in what concerns lipophilic toxins, therefore, constituting a crucial tool in the refinement of regulatory limits for the presence of biotoxins in seafood.
- Metabolomic and taxonomic characterization of Haloleptolyngbya lusitanica sp. nov . (Cyanobacteria, Synechococcales)Publication . Cordeiro, Rita; Luz, Rúben; Lage, Sandra; Menezes, Carina; Dias, Elsa; Flores, Cintia; Fonseca, Amélia; Gonçalves, VítorThe morphological plasticity of cyanobacteria and their widespread ecological dominance in a wide range of habitats highlights the need for in-depth taxonomic studies. This work focused on the taxonomical revision of Leptolyngbya (Cyanophyceae) strains deposited in the ESSACC culture collection and their metabolomic characterization. Although the studied ESSACC strains were morphologically identified as Leptolyngbya sp., the 16S rRNA gene and 16S-23S rRNA ITS analysis revealed that two strains (LMECYA 079 and LMECYA 173) belong to Haloleptolyngbya and represent a new taxonomical unit, genetically unique, ecologically plastic and adapted to both freshwater and thermal habitats, here described as Haloleptolyngbya lusitanica sp. nov. To perform a suspect screening of cyanometabolites in these strains, we used a non-targeted liquid chromatography-high resolution mass spectrometry (LC-HRMS) metabolomic approach. Several metabolites were identified in Haloleptolyngbya lusitanica: micropeptin MM978, spumigin 640, oscillatoxin A and anabaenopeptin D. Strains were maintained and grown under the same conditions, revealing the common production of oscillatoxin A by both H. lusitanica strains. Other identified metabolites, however, were strain-specific, such as anabaenoptin D, which was only detected in LMECYA 173. The different cyanometabolite profiles reinforce the notion that cyanobacteria have the ability to adapt to different habitats, which is maintained under long-term culturing conditions.