Browsing by Author "Gama, Sofia"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Copper Complexes with 1,10-Phenanthroline Derivatives: Underlying Factors Affecting Their CytotoxicityPublication . Nunes, Patrique; Correia, Isabel; Marques, Fernanda; Matos, Antonio Pedro; dos Santos, Margarida M. C.; Azevedo, Cristina G.; Capelo, Jose-Luis; Santos, Hugo M.; Gama, Sofia; Pinheiro, Teresa; Cavaco, Isabel; Pessoa, Joao CostaThe interpretation of in vitro cytotoxicity data of Cu(II)-1,10-phenanthroline (phen) complexes normally does not take into account the speciation that complexes undergo in cell incubation media and its implications in cellular uptake and mechanisms of action. We synthesize and test the activity of several distinct Cu(II)-phen compounds; up to 24 h of incubation, the cytotoxic activity differs for the Cu complexes and the corresponding free ligands, but for longer incubation times (e.g., 72 h), all compounds display similar activity. Combining the use of several spectroscopic, spectrometric, and electrochemical techniques, the speciation of Cu-phen compounds in cell incubation media is evaluated, indicating that the originally added complex almost totally decomposed and that Cu(II) and phen are mainly bound to bovine serum albumin. Several methods are used to disclose relationships between structure, activity, speciation in incubation media, cellular uptake, distribution of Cu in cells, and cytotoxicity. Contrary to what is reported in most studies, we conclude that interaction with cell components and cell death involves the separate action of Cu ions and phen molecules, not [Cu(phen)(n)] species. This conclusion should similarly apply to many other Cu-ligand systems reported to date.
- DNA cleavage activity of VIVO(acac)2 and derivativesPublication . Butenko, Nataliya; Tomaz, Ana Isabel; Nouri, Ofelia; Escribano, Esther; Moreno, Virtudes; Gama, Sofia; Ribeiro, Vera; Telo, João Paulo; Pessoa, João Costa; Cavaco, Isabel Maria Palma AntunesThe DNA cleavage activity of several b-diketonate vanadyl complexes is examined. Vanadyl acetylacetonate,VIVO(acac)2, 1, shows a remarkable activity in degrading plasmid DNA in the absence of any activating agents, air and photoirradiation. The cleaving activity of several related complexes VIVO(hd)2(2, Hhd = 3,5-heptanedione), VIVO(acac-NH2)2 (3, Hacac-NH2 = acetoacetamide) and VIVO(acac-NMe2)2(4, Hacac-NMe2 = N,N-dimethylacetoacetamide) is also evaluated. It is shown that 2 exhibits an activity similar to 1, while 3 and 4 are much less efficient cleaving agents. The different activity of the complexes is related to their stability towards hydrolysis in aqueous solution, which follows the order 1 2 3 4.The nature of the pH buffer was also found to be determinant in the nuclease activity of 1 and 2. In a phosphate buffered medium DNA cleavage by these agents is much more efficient than in tris, hepes,mes or mops buffers. The reaction seems to take place through a mixed mechanism, involving the formation of reactive oxygen species (ROS), namely OH radicals, and possibly also direct cleavage at phosphodiester linkages induced by the vanadium complexes.