Percorrer por autor "Grimalt, Joan O."
A mostrar 1 - 5 de 5
Resultados por página
Opções de ordenação
- Combination of insolation and ice-sheet forcing drive enhanced humidity in northern subtropical regions during MIS 13Publication . Oliveira, Dulce; Desprat, Stéphanie; Yin, Qiuzhen; Rodrigues, Teresa; Naughton, Filipa; Trigo, Ricardo M.; Su, Qianqian; Grimalt, Joan O.; Alonso-Garcia, Montserrat; H L Voelker, Antje; Abrantes, Fatima; Sánchez Goñi, Maria FernandaMarine Isotope Stage (MIS) 13, similar to 533-478 ka, has received particular attention due to the unexpected enhancement of monsoon systems under a cool climate characterized by lower atmospheric CO2 and larger ice volume than many other interglacials. Key questions remain about its regional expression (intensity, climate variability, length), and underlying forcing factors, in particular at the mid-latitudes. Here we examine the SW Iberian vegetation, terrestrial climate and sea surface temperature (SST) variability during MIS 13 by combining pollen and biomarker data from IODP Site U1385 with climate-model experiments. We show, for the first time, that despite strong precessional forcing, MIS 13 stands out for its large forest expansions with a reduced Mediterranean character alternating with muted forest contractions, indicating that this stage is marked by a cool-temperate climate regime with high levels of humidity. Results of our data-model comparison reveal that MIS 13 orbitally driven SW Iberian climate and vegetation changes are modulated by the relatively strong ice-sheet forcing. We find that the Northern Hemisphere ice-sheets prescribed at the MIS 13 climate optimum reinforce the insolation effect by increasing the tree fraction and both winter and summer precipitation. We propose that the interactions between ice-sheets and major atmospheric circulation systems may have resulted in the persistent influence of the mid-latitude cells over the SW Iberian region, which led to intensified moisture availability and reduced seasonality, and, in turn, to a pronounced expansion of the temperate forest.
- Millennial‐Scale Climate Variability Potentially Shaped the Early Interglacial Optimum in Southern EuropePublication . Desprat, Stéphanie; Guillem, Gauthier; Sánchez Goñi, Maria Fernanda; Rodrigues, Teresa; Yin, Qiuzhen; Grimalt, Joan O.The seasonal and latitudinal distribution of insolation is considered the main factor controlling the magnitude and timing of interglacial periods. However, despite small differences in insolation forcing, vegetation and hydrology in southern Europe during past interglacials are variable and the gradual change in insolation cannot explain the observed short‐lived forest optimum. Here we focus on vegetation and hydroclimatic changes at orbital‐ and suborbital‐scales in southwestern Europe during two past warm interglacial periods with reduced ice‐sheets, namely Marine Isotope Stages (MIS) 9e and 5e. We provide new pollen and sea surface temperatures records for MIS 9e from IODP Site U1385. This pollen record shows a forest expansion in southern Iberia over a 14 ky interval, bracketed by the millennial‐scale cooling events of Termination IV and MIS 9d. Between 334.5 and 332.5 ka, forest expansion reached a maximum, suggesting increased winter moisture during early MIS 9e. Model‐data comparison for MIS 9e and 5e shows that insolation is the main driver of the orbital‐scale vegetation and precipitation changes in Iberia, atmospheric CO2 forcing playing a secondary role. The high‐frequency component of the MIS 9e and 5e forest timeseries highlights the early interglacial forest and precipitation maxima as prominent suborbital events lasting ∼2 ky. We propose that the primarily insolation‐driven forest and precipitation optima were fostered by the non‐equilibrium conditions generated by the millennial‐scale deglacial variability during the early interglacials. Additionally, the early end of these optima may have been favored by a cooling and drying event that is part of the persistent intra‐interglacial variability.
- A new perspective of the Alboran Upwelling System reconstruction during the Marine Isotope Stage 11: a high-resolution coccolithophore recordPublication . González-Lanchas, Alba; Flores, José-Abel; Sierro, Francisco J.; Bárcena, María Ángeles; Rigual-Hernández, Andrés S.; Oliveira, Dulce; Azibeiro, Lucía A.; Marino, Maria; Maiorano, Patrizia; Cortina, Aleix; Cacho, Isabel; Grimalt, Joan O.A high-resolution study of the MIS 12/MIS 11 transition and the MIS 11 (430-376 kyr) coccolithophore assemblages at Ocean Drilling Program Site 977 was conducted to reconstruct the palaeoceanographic and climatic changes in the Alboran Sea from the variability in surface water conditions. The nannofossil record was integrated with the planktonic oxygen and carbon stable isotopes, as well as the U-37(k') Sea Surface Temperature (SST) at the studied site during the investigated interval. The coccolithophore primary productivity, reconstructed from the PPP (primary productivity proxy = absolute values of Gephyrocapsa caribbeanica + small Gephyrocapsa group) revealed pronounced fluctuations, that were strongly associated with variations in the intensity of the regional Alboran Upwelling System. The comparison of the nannoplankton record with opal phytolith content for the studied site and the already available pollen record at the nearby Integrated Ocean Drilling Program Site U1385, suggests an association of the upwelling dynamics with the variability of the North Atlantic Oscillation-like (NAO-like) phase. High PPP during positive (+) NAO-like phases is the result of intensified upwelling, owing to the complete development of the surface hydrological structures at the Alboran Sea. This scenario was identified during the MIS 12/MIS 11 transition (428-422 kyr), the late MIS 11c (405-397 kyr), and MIS11 b to MIS 11a (397-376 kyr). Two short-term minima in the PPP and SST were observed during MIS 11 b and were coeval with the North Atlantic Heinrich-type (Ht) events Ht3 (similar to 390 kyr) and Ht2 (similar to 384 kyr). Increased abundance of the subpolar Coccolithus pelagicus subsp. pelagicus and Gephyrocapsa muellerae was consistent with the inflow of cold surface waters into the Mediterranean Sea during the Ht events. Lowered PPP during negative (-) NAO-like phases is the result of moderate upwelling by the incomplete development of surface hydrological structures at the Alboran Sea. This scenario is expressed during the early MIS 11c (422-405 kyr). Overall, the results of our study provide evidence of the important role of atmospheric circulation patterns in the North Atlantic region for controlling phytoplankton primary production and oceanographic circulation dynamics in the Western Mediterranean during MIS 11.
- Sources and distribution of organic matter and polycyclic aromatic hydrocarbons in sediments of the southwestern Portuguese shelfPublication . Mil-Homens, Mário; Gonçalves, Sofia; Cortés, Alejandro; van Drooge, Barend L.; Stigter, Henko de; Grimalt, Joan O.; Cordeiro, Lívia; Santos, Miguel M.; Almeida, C. Marisa R.; Caetano, MiguelTotal organic carbon (Corg), total nitrogen (Ntot), Corg/Ntot, δ13Corg, δ15N, calcium carbonate (CaCO3), and grain size were analyzed in 70 surface samples and 19 short cores from the southwestern Portuguese shelf. Perylene and USEPA-16 PAHs were quantified in a subset of these samples. The findings suggest that organic matter derives from a mix of terrestrial and marine sources, outlined by Corg, Ntot, and isotopic signatures. Perylene combined with δ13Corg was used to identify the main PAH sources in these environments. Diagnostic perylene ratios revealed contributions from natural sources in the Tagus region and contaminated materials from the Sado Dredged Disposal Site, with additional perylene in Sines linked to atmospheric deposition of pyrogenic sources. A significant correlation between perylene and USEPA-16 PAHs indicates natural and anthropogenic inputs from the Tagus. This multiproxy approach—combining USEPA-16ΣPAHs, perylene, and δ13Corg—offers insights for assessing environmental risks and guiding marine environmental management according to the MSFD.
- Unexpected weak seasonal climate in the western Mediterranean region during MIS 31, a high-insolation forced interglacialPublication . Oliveira, Dulce; Goni, Maria F. Sanchez; Naughton, Filipa; Polanco-Martinez, J. M.; Jiménez-Espejo, Francisco J.; Grimalt, Joan O.; Martrat, Belen; Voelker, Antje; Trigo, Ricardo; Hodell, David; Abrantes, Fatima; Desprat, StephanieMarine Isotope Stage 31 (MIS 31) is an important analogue for ongoing and projected global warming, yet key questions remain about the regional signature of its extreme orbital forcing and intra-interglacial variability. Based on a new direct land-sea comparison in SW Iberian margin IODP Site U1385 we examine the climatic variability between 1100 and 1050 ka including the "super interglacial" MIS 31, a period dominated by the 41-ky obliquity periodicity. Pollen and biomarker analyses at centennial-scale resolution provide new insights into the regional vegetation, precipitation regime and atmospheric and oceanic temperature variability on orbital and suborbital timescales. Our study reveals that atmospheric and SST warmth during MIS 31 was not exceptional in this region highly sensitive to precession. Unexpectedly, this warm stage stands out as a prolonged interval of a temperate and humid climate regime with reduced seasonality, despite the high insolation (precession minima values) forcing. We find that the dominant forcing on the long-term temperate forest development was obliquity, which may have induced a decrease in summer dryness and associated reduction in seasonal precipitation contrast. Moreover, this study provides the first evidence for persistent atmospheric millennial-scale variability during this interval with multiple forest decline events reflecting repeated cooling and drying episodes in SW Iberia. Our direct land-sea comparison shows that the expression of the suborbital cooling events on SW Iberian ecosystems is modulated by the predominance of high or low-latitude forcing depending on the glacial/interglacial baseline climate states. Severe dryness and air-sea cooling is detected under the larger ice volume during glacial MIS 32 and MIS 30. The extreme episodes, which in their climatic imprint are similar to the Heinrich events, are likely related to northern latitude ice-sheet instability and a disruption of the Atlantic Meridional Overturning Circulation (AMOC). In contrast, forest declines during MIS 31 are associated to neither SST cooling nor high-latitude freshwater forcing. Time-series analysis reveals a dominant cyclicity of about 6 ky in the temperate forest record, which points to a potential link with the fourth harmonic of precession and thus low-latitude insolation forcing. (C) 2017 Elsevier Ltd. All rights reserved.
