Browsing by Author "Haeckel, M."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Assessing plume impacts caused by polymetallic nodule mining vehiclesPublication . Weaver, P.P.E.; Aguzzi, J.; Boschen-Rose, R.E.; Colaço, A.; de Stigter, H.; Gollner, S.; Haeckel, M.; Hauton, C.; Helmons, R.; Jones, D.O.B.; Lily, H.; Mestre, Nélia; Mohn, C.; Thomsen, L.Deep-sea mining may be just a few years away and yet society is struggling to assess the positive aspects, such as increasing the supply of metals for battery production to fuel the green revolution, versus the potentially large environmental impacts. Mining of polymetallic (manganese) nodules from the deep ocean is likely to be the first mineral resource targeted and will involve direct impacts to hundreds of km2 of seabed per mine per year. However, the mining activity will also cause the generation of large sediment plumes that will spread away from the mine site and have both immediate and long-term effects over much wider areas. We discuss what the impacts of plumes generated near the seabed by mining vehicles may be and how they might be measured in such challenging environments. Several different mining vehicles are under development around the world and depending on their design some may create larger plumes than others. We discuss how these vehicles could be compared so that better engineering designs could be selected and to encourage innovation in dealing with plume generation and spread. These considerations will aid the International Seabed Authority (ISA) that has the task of regulating mining activities in much of the deep sea in its commitment to promote the Best Available Technology (BAT) and Best Environmental Practice (BEP).
- Comparing environmental impacts of deep‐seabed and land‐based mining: a defensible frameworkPublication . A. Metaxas; Anglin, C. D.; Cross, A.; Drazen, J.; Haeckel, M.; Mudd, G.; Smith, C. R.; Smith, S.; Weaver, P. P. E.; Sonter, L.; Amon, D. J.; Erskine, P. D.; Levin, L. A.; Lily, H.; Maest, A. S.; Ramirez‐Llodra, E.; Sánchez, L. E.; Sharma, R.; Vanreusel, A.; Wheston, S.; Tunnicliffe, V.; Mestre, NéliaThe crises of climate change and biodiversity loss are interlinked and must be addressed jointly. A proposed solution for reducing reliance on fossil fuels, and thus mitigating climate change, is the transition from conventional combustion-engine to electric vehicles. This transition currently requires additional mineral resources, such as nickel and cobalt used in car batteries, presently obtained from land-based mines. Most options to meet this demand are associated with some biodiversity loss. One proposal is to mine the deep seabed, a vast, relatively pristine and mostly unexplored region of our planet. Few comparisons of environmental impacts of solely expanding land-based mining versus extending mining to the deep seabed for the additional resources exist and for biodiversity only qualitative. Here, we present a framework that facilitates a holistic comparison of relative ecosystem impacts by mining, using empirical data from relevant environmental metrics. This framework (Environmental Impact Wheel) includes a suite of physicochemical and biological components, rather than a few selected metrics, surrogates, or proxies. It is modified from the "recovery wheel" presented in the International Standards for the Practice of Ecological Restoration to address impacts rather than recovery. The wheel includes six attributes (physical condition, community composition, structural diversity, ecosystem function, external exchanges and absence of threats). Each has 3-5 sub attributes, in turn measured with several indicators. The framework includes five steps: (1) identifying geographic scope; (2) identifying relevant spatiotemporal scales; (3) selecting relevant indicators for each sub-attribute; (4) aggregating changes in indicators to scores; and (5) generating Environmental Impact Wheels for targeted comparisons. To move forward comparisons of land-based with deep seabed mining, thresholds of the indicators that reflect the range in severity of environmental impacts are needed. Indicators should be based on clearly articulated environmental goals, with objectives and targets that are specific, measurable, achievable, relevant, and time bound. The crises of climate change and biodiversity loss are interlinked and must be addressed jointly. A proposed solution for reducing reliance on fossil fuels, and thus mitigating climate change, is the transition from conventional combustion-engine to electric vehicles which currently requires additional mineral resources. Most options to meet this demand are associated with some biodiversity loss. One proposal is to mine the deep seabed, a vast, relatively pristine and mostly unexplored region of our planet. We present a framework that facilitates a holistic comparison of relative ecosystem impacts by mining, using empirical data from relevant environmental metrics.image.