Percorrer por autor "Hamed, Karim Ben"
A mostrar 1 - 3 de 3
Resultados por página
Opções de ordenação
- Intercropping salt-sensitive Solanum lycopersicum L. and salt-tolerant Arthrocaulon macrostachyum in salt-affected agricultural soil under open field conditions: Physiological, hormonal, metabolic and agronomic responsesPublication . Slatni, Tarek; Selmi, Aida; Kalboussi, Nesrine; Zemni, Hassène; Echadly, Adel; Espin, Gregorio Barba; Hernandez, José Antonio; Custódio, Luísa; Elfil, Hamza; Braga, Tiago; Diaz-Vivancos, Pedro; Hamed, Karim BenSalinity is one of the important environmental risks affecting agricultural production in the world. Under this condition and with the conventional cultivation methods, glycophyte plants, like tomato, are subjected to many stresses, such as ion toxicity, osmotic stress, nutritional disturbance, oxidative damage and metabolic disorders, which cause growth inhibition and yield reduction. In this context, the main objective of our study was to compare the physiological, hormonal, metabolic and agronomic responses of tomato plants (Solanum lycopersicum L.) grown in monoculture (TM) or intercropping (TH) with the halophytic species Arthrocaulon macrostachyum in a salt affected soil. The results showed that the intercropping system (TH) reduced the soil electrical conductivity, and Na+ and Cl- contents, improving mineral nutrition in tomato plants compared to TM. In addition, TH decreased the osmotic stress, improved water potential and increased water use efficiency in tomato plants, whereas the integrity of gas exchange parameters were maintained; as a consequence, an increase in tomato yield was achieved. Moreover, the ratio of stress hormones (ABA, SA and JA) to growth regulating hormones (GA, auxins and cytokinins) decreased under TH. Metabolomic analysis showed clear defined patterns of differentially accumulated metabolites. Some of the metabolites with higher abundance in TH were linked to phenylpropanoid biosynthesis and phenylalanine metabolism, whereas alanine, aspartate and glutamate metabolism, monoterpenoid biosynthesis and butanoate metabolism pathways were downregulated. Our results support the importance of A. macrostachyum in the desalination of salt-affected soils and in the improvement of tomato yield in mixed culture. Indeed, this intercropping system offers farmers a low-cost biosolution that improves yields while respecting the environment.
- Seasonal biochemical variations in mediterranean halophytes and salt-tolerant plants: targeting sustainable innovations in ruminant healthPublication . Oliveira, Marta; Guerreiro Pereira, Catarina Alexandra; Castañeda-Loaiza, Viana; Rodrigues, Maria João; Neng, Nuno R.; Hoste, Hervé; Hamed, Karim Ben; Custódio, LuísaClimate change intensifies water scarcity and soil salinization, threatening agriculture and livestock systems, especially in arid Mediterranean regions. Halophytes and salt-tolerant plants offer sustainable alternatives to support ruminant health and productivity where traditional crops fail, helping mitigate climate impacts. This work evaluated seasonality effects on the biochemical properties, including proximate composition, minerals, antioxidant properties, and the phenolic composition of the aerial organs of halophytes and salt-tolerant species, aiming at their future exploitation in ruminant production as novel nutraceutical or phytotherapeutic products. Target species included four halophytic species according to the eHaloph database (Calystegia soldanella (L.) R. Br. 1810, Medicago marina L. 1753, Plantago coronopus L. 1753, and Limoniastrum monopetalum (L.) Boiss. 1848) and five salt-tolerant plants (Pistacia lentiscus L. 1753, Cladium mariscus (L.) Pohl 1809, Inula crithmoides L. (syn. Limbarda crithmoides Dumort. 1827), Helichrysum italicum subsp. picardii (Boiss. & Reut.) Franco 1984, and Crucianella maritima L. 1753). H. italicum, M. marina, and C. soldanella appear well-suited for nutraceutical applications, while P. lentiscus, L. monopetalum, and C. mariscus hold promise for the development of, for example, phytotherapeutic products. This research underscores the significance of seasonal and species-specific variations in nutrient and phytochemical composition, displaying a range of opportunities for novel, sustainable, and tailored solutions to ruminant production systems in arid environments.
- The sustainable use of halophytes in salt-affected land: state-of-the-art and next steps in a saltier worldPublication . Bazihizina, Nadia; Papenbrock, Jutta; Aronsson, Henrik; Hamed, Karim Ben; Elmaz, Özkan; Dafku, Zenepe; Custódio, Luísa; Rodrigues, Maria João; Atzori, Giulia; Negacz, KatarzynaSalinization is a major cause of soil degradation that affects several million hectares of agricultural land, threatening food security and the sustainability of agricultural systems worldwide. Nevertheless, despite the negative impact of salinity, salt-affected land also provides several important ecosystem services, from providing habitats and nurseries for numerous species to sustainable food production. This opinion paper, written in the framework of the EU COST Action CA22144 SUSTAIN on the sustainable use of salt-affected land, therefore, focuses on the potential of halophytes and saline agriculture to transform and restore key functions of these salt-affected and marginal lands. As the current knowledge on sustainable saline agriculture upscaling is fragmented, we highlight (i) the research gaps in halophyte and salinity research and (ii) the main barriers and potentials of saline agriculture for addressing food security and environmental sustainability in terms of population growth and climate change.
