Browsing by Author "Hu, Bin"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- Multinational attitudes toward AI in Health Care and diagnostics among Hospital patients.Publication . Busch, Felix; Hoffmann, Lena; Xu, Lina; Zhang, Long Jiang; Hu, Bin; García-Juárez, Ignacio; Toapanta-Yanchapaxi, Liz; Gorelik, Natalia; Gorelik, Valérie; Rodriguez-Granillo, Gaston; Ferrarotti, Carlos; Cuong, Nguyen; Thi, Chau; Tuncel, Murat; Kaya, Gürsan; Solis-Barquero, Sergio; Mendez Avila, Maria; Ivanova, Nevena; Kitamura, Felipe; Hayama, Karina; Puntunet Bates, Monserrat; Torres, Pedro Iturralde; Ortiz-Prado, Esteban; Izquierdo-Condoy, Juan; Schwarz, Gilbert; Hofstaetter, Jochen; Hide, Michihiro; Takeda, Konagi; Peric, Barbara; Pilko, Gašper; Thulesius, Hans; Lindow, Thomas; Kolawole, Israel; Olatoke, Samuel Adegboyega; Grzybowski, Andrzej; Corlateanu, Alexandru; Iaconi, Oana-Simina; Li, Ting; Domitrz, Izabela; Kepczynska, Katarzyna; Mihalcin, Matúš; Fašaneková, Lenka; Zatonski, Tomasz; Fulek, Katarzyna; Molnár, András; Maihoub, Stefani; da Silva Gama, Zenewton; Saba, Luca; Sountoulides, Petros; Makowski, Marcus; Aerts, Hugo; Adams, Lisa; Bressem, Keno; Navarro, Álvaro Aceña; Águas, Catarina; Aineseder, Martina; Alomar, Muaed; Al Sliman, Rashid; Anand, Gautam; Angkurawaranon, Salita; Aoki, Shuhei; Arkoh, Samuel; Ashraf, Gizem; Astri, Yesi; Bakhshi, Sameer; Bayramov, Nuru; Billis, Antonis; Bitencourt, Almir; Bolejko, Anetta; Bollas Becerra, Antonio; Bwambale, Joe; Capela, Andreia; Cau, Riccardo; Chacon-Acevedo, Kelly; Chaunzwa, Tafadzwa; Chojniak, Rubens; Clements, Warren; Cuocolo, Renato; Dahlblom, Victor; Sousa, Kelienny de Meneses; Villarrubia, Jorge Esteban; Desai, Vijay; Dhakal, Ajaya; Dignum, Virginia; Andrade, Rubens G. Feijo; Ferraioli, Giovanna; Ganguly, Shuvadeep; Garg, Harshit; Savevska, Cvetanka Gjerakaroska; Radovikj, Marija Gjerakaroska; Gkartzoni, Anastasia; Gorospe, Luis; Griffin, Ian; Hadamitzky, Martin; Ndahiro, Martin Hakorimana; Hering, Alessa; Hochhegger, Bruno; Huseynova, Mehriban; Ishida, Fujimaro; Jha, Nisha; Jiang, Lili; Kader, Rawen; Kavnoudias, Helen; Klein, Clément; Kolostoumpis, George; Koshy, Abraham; Kruger, NicholaS; Löser, Alexander; Lucijanic, Marko; Mantziari, Despoina; Margue, Gaelle; McFadden, Sonyia; Miyake, Masahiro; Morakote, Wipawee; Ngabonziza, Issa; Nguyen, Thao; Niehues, Stefan; Nortje, Marc; Palaian, Subish; Pentara, Natalia; Poma, Gianluigi; Almeida, Rui; Purwoko, Mitayani; Pyrgidis, Nikolaos; Rafailidis, Vasileios; Rainey, Clare; Ribeiro, João; Agudelo, Nicolás Rozo; Sado, Keina; Saidman, Julia; Saturno-Hernandez, Pedro; Suryadevara, Vidyani; Schulz, Gerald; Soric, Ena; Soto-Pérez-Olivares, Javier; Stanzione, Arnaldo; Struck, Julian Peter; Takaoka, Hiroyuki; Tanioka, Satoru; Huyen, Tran; Truhn, Daniel; van Dijk, Elon; van Wijngaarden, Peter; Wang, Yuan-Cheng; Weidlich, Matthias; Zhang, ShuhangThe successful implementation of artificial intelligence (AI) in health care depends on its acceptance by key stakeholders, particularly patients, who are the primary beneficiaries of AI-driven outcomes. OBJECTIVES To survey hospital patients to investigate their trust, concerns, and preferences toward the use of AI in health care and diagnostics and to assess the sociodemographic factors associated with patient attitudes. DESIGN, SETTING, AND PARTICIPANTS This cross-sectional study developed and implemented an anonymous quantitative survey between February 1 and November 1, 2023, using a nonprobability sample at 74 hospitals in 43 countries. Participants included hospital patients 18 years of age or older who agreed with voluntary participation in the survey presented in 1 of 26 languages. EXPOSURE Information sheets and paper surveys handed out by hospital staff and posted in conspicuous hospital locations. MAIN OUTCOMES AND MEASURES The primary outcome was participant responses to a 26-item instrument containing a general data section (8 items) and 3 dimensions (trust in AI, AI and diagnosis, preferences and concerns toward AI) with 6 items each. Subgroup analyses used cumulative link mixed and binary mixed-effects models.