Browsing by Author "Israel, Álvaro"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- DNA barcoding reveals cryptic diversity, taxonomic conflicts and novel biogeographical insights in Cystoseira s.l. (Phaeophyceae)Publication . Neiva, J.; Bermejo, Ricardo; Medrano, Alba; Capdevila, Pol; Milla-Figueras, David; Afonso, Pedro; Ballesteros, Enric; Sabour, Brahim; Serio, Donatella; Nóbrega, Eduardo; Soares, João; Valdazo, José; Tuya, Fernando; Mulas, Martina; Israel, Álvaro; Sadogurska, Sofia S.; Guiry, Michael D.; Pearson, Gareth; Serrao, EsterCystoseira sensu lato (s.l.) - encompassing the genera Cystoseira sensu stricto (s.s.), Ericaria and Gongolaria - is a diverse group of forest-forming brown macroalgae endemic to the warm-temperate North-east Atlantic. These algae have immense biogeographic and ecological significance and have been experiencing recent regional declines. Most Cystoseira s.l. display important morphological plasticity and can be confused with similar species. Therefore, species boundaries, geographic ranges and phylogenetic affinities remain imprecise for most. In the face of persistent taxonomic difficulties, several authors underlined the necessity for new molecular-based approaches, but studies so far lacked representativity, resolution and standardization. To fill in these gaps, in this study we sequenced a comprehensive collection of Cystoseira s.l. spanning its entire North-east Atlantic range for a similar to 1200 bp cox1 barcode, and sequenced selected individuals representing major genetic entities for a few additional plastid markers. Phylogeographic, phylogenetic and species delimitation methods revealed 27 Molecular Operational Taxonomic Units, including unaccounted cryptic diversity, and elucidated with unprecedented resolution species compositions and phylogenetic relationships within each genus. Some entities within the lineages Cystoseira compressa/humilis, Ericaria brachycarpa/crinita, E selaginoides and tophulose Gongolaria, as well as among free-living algae, conflicted with a priori taxonomic assignments, and required the redefinition, reinstatement and recognition of new taxa. For some, diagnostic mutations and biogeography were more useful for species identifications than morphological characters or conventional barcoding gaps. A few species showed narrow geographic ranges and others were the sole representatives of their respective lineages. Several sister-species showed Atlantic vs Mediterranean complementary ranges. phylogenetic signal of coxl was nevertheless insufficient to confidently determine patterns of lineage splitting in several lineages and species complexes and did not improve significantly with additional plastid markers. We discuss novel systematics and biogeography insights considering the advantages and shortcomings of the barcoding approach employed, and how this comprehensive baseline study can be expanded to address multiple questions still left unanswered.
- Non-indigenous seaweeds in the Northeast Atlantic Ocean, the Mediterranean Sea and Macaronesia: a critical synthesis of diversity, spatial and temporal patternsPublication . van der Loos, Luna M.; Bafort, Quinten; Bosch, Samuel; Ballesteros, Enric; Bárbara, Ignacio; Berecibar, Estibaliz; Blanfuné, Aurélie; Bogaert, Kenny; Bouckenooghe, Silke; Boudouresque, Charles-François; Brodie, Juliet; Cecere, Ester; Díaz-Tapia, Pilar; Engelen, Aschwin; Gunnarson, Karl; Shabaka, Soha Hamdy; Hoffman, Razy; Husa, Vivian; Israel, Álvaro; Karremans, Mart; Knoop, Jessica; Le Gall, Line; Maggs, Christine A.; Mineur, Frédéric; Parente, Manuela; Perk, Frank; Petrocelli, Antonella; Rodríguez-Prieto, Conxi; Ruitton, Sandrine; Sansón, Marta; A Serrao, Ester; Sfriso, Adriano; Sjøtun, Kjersti; Stiger-Pouvreau, Valérie; Surget, Gwladys; Taşkin, Ergün; Thibaut, Thierry; Tsiamis, Konstantinos; Van De Weghe, Lotte; Verlaque, Marc; Viard, Frédérique; Vranken, Sofie; Leliaert, Frederik; De Clerck, OlivierEffective monitoring of non-indigenous seaweeds and combatting their effects relies on a solid confirmation of the non-indigenous status of the respective species. We critically analysed the status of presumed non-indigenous seaweed species reported from the Mediterranean Sea, the Northeast Atlantic Ocean and Macaronesia, resulting in a list of 140 species whose non-indigenous nature is undisputed. For an additional 87 species it is unclear if they are native or non-indigenous (cryptogenic species) or their identity requires confirmation (data deficient species). We discuss the factors underlying both taxonomic and biogeographic uncertainties and outline recommendations to reduce uncertainty about the non-indigenous status of seaweeds. Our dataset consisted of over 19,000 distribution records, half of which can be attributed to only five species (Sargassum muticum, Bonnemaisonia hamifera, Asparagopsis armata, Caulerpa cylindracea and Colpomenia peregrina), while 56 species (40%) are recorded no more than once or twice. In addition, our analyses revealed considerable variation in the diversity of non-indigenous species between the geographic regions. The Eastern Mediterranean Sea is home to the largest fraction of non-indigenous seaweed species, the majority of which have a Red Sea or Indo-Pacific origin and have entered the Mediterranean Sea mostly via the Suez Canal. Non-indigenous seaweeds with native ranges situated in the Northwest Pacific make up a large fraction of the total in the Western Mediterranean Sea, Lusitania and Northern Europe, followed by non-indigenous species with a presumed Australasian origin. Uncertainty remains, however, regarding the native range of a substantial fraction of non-indigenous seaweeds in the study area. In so far as analyses of first detections can serve as a proxy for the introduction rate of non-indigenous seaweeds, these do not reveal a decrease in the introduction rate, indicating that the current measures and policies are insufficient to battle the introduction and spread of non-indigenous species in the study area.
