Browsing by Author "Knoop, Jessica"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- A European biobanking strategy for safeguarding macroalgal genetic material to ensure food security, biosecurity and conservation of biodiversityPublication . Hofmann, Laurie C.; Brakel, Janina; Bartsch, Inka; Arismendi, Gabriel Montecinos; Bermejo, Ricardo; Parente, Manuela I.; Creis, Emeline; Clerck, Olivier De; Jacquemin, Bertrand; Knoop, Jessica; Lorenz, Maike; Machado, Levi Pompermayer; Orfanidis, Sotiris; Probert, Ian; Menendez, , Cecilia Rad; Ross, Michael; Rautenberger, Ralf; Schiller, Jessica; Serrao, Ester A.; Steinhagen, Sophie; Sulpice, Ronan; Valero, Myriam; Wichard, Thomas; Serrao, Ester A.; Martins, neuzaBiobanking (also known as germplasm banking) of genetic material is a well-established concept for preserving plant genetic diversity and also contributes to food security, conservation and restoration. Macroalgae currently represent a very small percentage of the strains in publicly accessible European germplasm banks, despite the increasing recognition of their contribution to achieving several of the United Nations Sustainable Development Goals. There is no strategic coordination of existing macroalgal strains, which could have severe ecological and economic implications as species and their genetic diversity disappear rapidly due to local and global environmental stressors. In this opinion paper, we stress the importance of a coordinated European effort for preserving macroalgal genetic diversity and suggest the development of a three-pillared system to safeguard European macroalgal genetic material consisting of (1) a European Board of Macroalgal Genetic Resources (EBMGR) to provide supervision, support and coordination, (2) a network of germplasm banks consisting of currently existing and newly established infrastructures and (3) an interoperable databank integrating existing databanks. While it will be the task of the EBMGR to identify and coordinate priorities, we offer initial recommendations for preserving macroalgal genetic material, discuss the risks of inaction, and highlight the challenges that must be overcome.
- Non-indigenous seaweeds in the Northeast Atlantic Ocean, the Mediterranean Sea and Macaronesia: a critical synthesis of diversity, spatial and temporal patternsPublication . van der Loos, Luna M.; Bafort, Quinten; Bosch, Samuel; Ballesteros, Enric; Bárbara, Ignacio; Berecibar, Estibaliz; Blanfuné, Aurélie; Bogaert, Kenny; Bouckenooghe, Silke; Boudouresque, Charles-François; Brodie, Juliet; Cecere, Ester; Díaz-Tapia, Pilar; Engelen, Aschwin; Gunnarson, Karl; Shabaka, Soha Hamdy; Hoffman, Razy; Husa, Vivian; Israel, Álvaro; Karremans, Mart; Knoop, Jessica; Le Gall, Line; Maggs, Christine A.; Mineur, Frédéric; Parente, Manuela; Perk, Frank; Petrocelli, Antonella; Rodríguez-Prieto, Conxi; Ruitton, Sandrine; Sansón, Marta; A Serrao, Ester; Sfriso, Adriano; Sjøtun, Kjersti; Stiger-Pouvreau, Valérie; Surget, Gwladys; Taşkin, Ergün; Thibaut, Thierry; Tsiamis, Konstantinos; Van De Weghe, Lotte; Verlaque, Marc; Viard, Frédérique; Vranken, Sofie; Leliaert, Frederik; De Clerck, OlivierEffective monitoring of non-indigenous seaweeds and combatting their effects relies on a solid confirmation of the non-indigenous status of the respective species. We critically analysed the status of presumed non-indigenous seaweed species reported from the Mediterranean Sea, the Northeast Atlantic Ocean and Macaronesia, resulting in a list of 140 species whose non-indigenous nature is undisputed. For an additional 87 species it is unclear if they are native or non-indigenous (cryptogenic species) or their identity requires confirmation (data deficient species). We discuss the factors underlying both taxonomic and biogeographic uncertainties and outline recommendations to reduce uncertainty about the non-indigenous status of seaweeds. Our dataset consisted of over 19,000 distribution records, half of which can be attributed to only five species (Sargassum muticum, Bonnemaisonia hamifera, Asparagopsis armata, Caulerpa cylindracea and Colpomenia peregrina), while 56 species (40%) are recorded no more than once or twice. In addition, our analyses revealed considerable variation in the diversity of non-indigenous species between the geographic regions. The Eastern Mediterranean Sea is home to the largest fraction of non-indigenous seaweed species, the majority of which have a Red Sea or Indo-Pacific origin and have entered the Mediterranean Sea mostly via the Suez Canal. Non-indigenous seaweeds with native ranges situated in the Northwest Pacific make up a large fraction of the total in the Western Mediterranean Sea, Lusitania and Northern Europe, followed by non-indigenous species with a presumed Australasian origin. Uncertainty remains, however, regarding the native range of a substantial fraction of non-indigenous seaweeds in the study area. In so far as analyses of first detections can serve as a proxy for the introduction rate of non-indigenous seaweeds, these do not reveal a decrease in the introduction rate, indicating that the current measures and policies are insufficient to battle the introduction and spread of non-indigenous species in the study area.