Browsing by Author "Kone, Aminatou"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Novel polymorphisms in plasmodium falciparum ABC transporter genes are associated with major ACT antimalarial drug resistancePublication . Veiga, Maria Isabel; Pousão-Ferreira, Pedro; Jornhagen, Louise; Malmberg, Maja; Kone, Aminatou; Schmidt, Berit Aydin; Petzold, Max; Bjorkman, Anders; Nosten, Francois; Gil, José PedroChemotherapy is a critical component of malaria control. However, the most deadly malaria pathogen, Plasmodium falciparum, has repeatedly mounted resistance against a series of antimalarial drugs used in the last decades. Southeast Asia is an epicenter of emerging antimalarial drug resistance, including recent resistance to the artemisinins, the core component of all recommended antimalarial combination therapies. Alterations in the parasitic membrane proteins Pgh-1, PfCRT and PfMRP1 are believed to be major contributors to resistance through decreasing intracellular drug accumulation. The pfcrt, pfmdr1 and pfmrp1 genes were sequenced from a set of P. falciparum field isolates from the Thai-Myanmar border. In vitro drug susceptibility to artemisinin, dihydroartemisinin, mefloquine and lumefantrine were assessed. Positive correlations were seen between the in vitro susceptibility responses to artemisinin and dihydroartemisinin and the responses to the arylamino-alcohol quinolines lumefantrine and mefloquine. The previously unstudied pfmdr1 F1226Y and pfmrp1 F1390I SNPs were associated significantly with artemisinin, mefloquine and lumefantrine in vitro susceptibility. A variation in pfmdr1 gene copy number was also associated with parasite drug susceptibility of artemisinin, mefloquine and lumefantrine. Our work unveils new candidate markers of P. falciparum multidrug resistance in vitro, while contributing to the understanding of subjacent genetic complexity, essential for future evidence-based drug policy decisions.
- Quinine Treatment Selects the pfnhe-1 ms4760-1 Polymorphism in Malian Patients with Falciparum MalariaPublication . Kone, Aminatou; Mu, Jianbing; Maiga, Hamma; Beavogui, Abdoul H.; Yattara, Omar; Sagara, Issaka; Tekete, Mamadou M.; Traore, Oumar B.; Dara, Antoine; Dama, Souleymane; Diallo, Nouhoum; Kodio, Aly; Traore, Aliou; Bjoerkman, Anders; Gil, José Pedro; Doumbo, Ogobara K.; Wellems, Thomas E.; Djimde, Abdoulaye A.Background. The mechanism of Plasmodium falciparum resistance to quinine is not known. In vitro quantitative trait loci mapping suggests involvement of a predicted P. falciparum sodium-hydrogen exchanger (pfnhe-1) on chromosome 13. Methods. We conducted prospective quinine efficacy studies in 2 villages, Kolle and Faladie, Mali. Cases of clinical malaria requiring intravenous therapy were treated with standard doses of quinine and followed for 28 days. Treatment outcomes were classified using modified World Health Organization protocols. Molecular markers of parasite polymorphisms were used to distinguish recrudescent parasites from new infections. The prevalence of pfnhe-1 ms4760-1 among parasites before versus after quinine treatment was determined by direct sequencing. Results. Overall, 163 patients were enrolled and successfully followed. Without molecular correction, the mean adequate clinical and parasitological response (ACPR) was 50.3% (n = 163). After polymerase chain reaction correction to account for new infections, the corrected ACPR was 100%. The prevalence of ms4760-1 increased significantly, from 26.2% (n = 107) before quinine treatment to 46.3% (n = 54) after therapy (P = .01). In a control sulfadoxine-pyrimethamine study, the prevalence of ms4760-1 was similar before and after treatment. Conclusions. This study supports a role for pfnhe-1 in decreased susceptibility of P. falciparum to quinine in the field.