Browsing by Author "Marques, M. Paula M."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Characterization of decavanadate and decaniobate solutions by Raman spectroscopyPublication . Aureliano, M.; Ohlin, C. André; Vieira, Michele O.; Marques, M. Paula M.; Casey, William H.; Batista de Carvalho, Luís A. E.The decaniobate ion, (Nb10 = [Nb10O28]6−) being isoelectronic and isostructural with the decavanadate ion (V10 = [V10O28]6−), but chemically and electrochemically more inert, has been useful in advancing the understanding of V10 toxicology and pharmacological activities. In the present study, the solution chemistry of Nb10 and V10 between pH 4 and 12 is studied by Raman spectroscopy. The Raman spectra of V10 show that this vanadate species dominates up to pH 6.45 whereas it remains detectable until pH 8.59, which is an important range for biochemistry. Similarly, Nb10 is present between pH 5.49 and 9.90 and this species remains detectable in solution up to pH 10.80. V10 dissociates at most pH values into smaller tetrahedral vanadate oligomers such as V1 and V2, whereas Nb10 dissociates into Nb6 under mildly (10 > pH > 7.6) or highly alkaline conditions. Solutions of V10 and Nb10 are both kinetically stable under basic pH conditions for at least two weeks and at moderate temperature. The Raman method provides a means of establishing speciation in the difficult niobate system and these findings have important consequences for toxicology activities and pharmacological applications of vanadate and niobate polyoxometalates.
- Decavanadate, decaniobate, tungstate and molybdate interactions with sarcoplasmic reticulum Ca2+-ATPase: quercetin prevents cysteine oxidation by vanadate but does not reverse ATPase inhibitionPublication . Fraqueza, Gil; Carvalho, Luís A. E. Batista de; Marques, M. Paula M.; Maia, Luisa; Ohlin, C. André; Casey, William H.; Aureliano, M.Recently we demonstrated that the decavanadate (V10) ion is a stronger Ca2+-ATPase inhibitor than other oxometalates, such as the isoelectronic and isostructural decaniobate ion, and the tungstate and molybdate monomer ions, and that it binds to this protein with a 1 : 1 stoichiometry. The V10 interaction is not affected by any of the protein conformations that occur during the process of calcium translocation (i.e. E1, E1P, E2 and E2P) (Fraqueza et al., J. Inorg. Biochem., 2012). In the present study, we further explore this subject, and we can now show that the decaniobate ion, [Nb10 = Nb10O28]6−, is a useful tool in deducing the interaction and the non-competitive Ca2+-ATPase inhibition by the decavanadate ion [V10 = V10O28]6−. Moreover, decavanadate and vanadate induce protein cysteine oxidation whereas no effects were detected for the decaniobate, tungstate or molybdate ions. The presence of the antioxidant quercetin prevents cysteine oxidation, but not ATPase inhibition, by vanadate or decavanadate. Definitive V(IV) EPR spectra were observed for decavanadate in the presence of sarcoplasmic reticulum Ca2+- ATPase, indicating a vanadate reduction at some stage of the protein interaction. Raman spectroscopy clearly shows that the protein conformation changes that are induced by V10, Nb10 and vanadate are different from the ones induced by molybdate and tungstate monomer ions. Here, Mo and W cause changes similar to those by phosphate, yielding changes similar to the E1P protein conformation. The putative reduction of vanadium(V) to vanadium(IV) and the non-competitive binding of the V10 and Nb10 decametalates may explain the differences in the Raman spectra compared to those seen in the presence of molybdate or tungstate. Putting it all together, we suggest that the ability of V10 to inhibit the Ca2+- ATPase may be at least in part due to the process of vanadate reduction and associated protein cysteine oxidation. These results contribute to the understanding and application of these families of mono- and polyoxometalates as effective modulators of many biological processes, particularly those associated with calcium homeostasis.