Browsing by Author "Milan, Massimo"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- A Microarray study of Carpet-Shell Clam (Ruditapes decussatus) shows common and organ-specific growth-related gene expression Differences in gills and digestive glandPublication . Saavedra, Carlos; Milan, Massimo; Leite, Ricardo B.; Cordero, David; Patarnello, Tomaso; Leonor Cancela, M.; Bargelloni, LucaGrowth rate is one of the most important traits from the point of view of individual fitness and commercial production in mollusks, but its molecular and physiological basis is poorly known. We have studied differential gene expression related to differences in growth rate in adult individuals of the commercial marine clam Ruditapes decussatus. Gene expression in the gills and the digestive gland was analyzed in 5 fast-growing and five slow-growing animals by means of an oligonucleotide microarray containing 14,003 probes. A total of 356 differentially expressed genes (DEG) were found. We tested the hypothesis that differential expression might be concentrated at the growth control gene core (GCGC), i. e., the set of genes that underlie the molecular mechanisms of genetic control of tissue and organ growth and body size, as demonstrated in model organisms. The GCGC includes the genes coding for enzymes of the insulin/ insulin-like growth factor signaling pathway (IIS), enzymes of four additional signaling pathways (Raf/ Ras/ Mapk, Jnk, TOR, and Hippo), and transcription factors acting at the end of those pathways. Only two out of 97 GCGC genes present in themicroarray showed differential expression, indicating a very little contribution of GCGC genes to growth-related differential gene expression. Forty eight DEGs were shared by both organs, with gene ontology (GO) annotations corresponding to transcription regulation, RNA splicing, sugar metabolism, protein catabolism, immunity, defense against pathogens, and fatty acid biosynthesis. GO termenrichment tests indicated that genes related to growth regulation, development and morphogenesis, extracellular matrix proteins, and proteolysis were overrepresented in the gills. In the digestive gland overrepresented GO terms referred to gene expression control through chromatin rearrangement, RAS-related small GTPases, glucolysis, and energy metabolism. These analyses suggest a relevant role of, among others, some genes related to the IIS, such as the ParaHox gene Xlox, CCAR and the CCN family of secreted proteins, in the regulation of growth in bivalves.
- Changes in the gene expression profiles of the brains of male European eels (Anguilla anguilla) during sexual maturationPublication . Churcher, Allison; Pujolar, Jose M.; Milan, Massimo; Hubbard, Peter; Martins, Rute S. T.; L. Saraiva, João; Huertas, Mar; Bargelloni, Luca; Patarnello, T.; Marino, Ilaria A. M.; Zane, Lorenzo; Canario, Adelino V. M.Background: The vertebrate brain plays a critical role in the regulation of sexual maturation and reproduction by integrating environmental information with developmental and endocrine status. The European eel Anguilla anguilla is an important species in which to better understand the neuroendocrine factors that control reproduction because it is an endangered species, has a complex life cycle that includes two extreme long distance migrations with both freshwater and seawater stages and because it occupies a key position within the teleost phylogeny. At present, mature eels have never been caught in the wild and little is known about most aspects of reproduction in A. anguilla. The goal of this study was to identify genes that may be involved in sexual maturation in experimentally matured eels. For this, we used microarrays to compare the gene expression profiles of sexually mature to immature males. Results: Using a false discovery rate of 0.05, a total of 1,497 differentially expressed genes were identified. Of this set, 991 were expressed at higher levels in brains (forebrain and midbrain) of mature males while 506 were expressed at lower levels relative to brains of immature males. The set of up-regulated genes includes genes involved in neuroendocrine processes, cell-cell signaling, neurogenesis and development. Interestingly, while genes involved in immune system function were down-regulated in the brains of mature males, changes in the expression levels of several receptors and channels were observed suggesting that some rewiring is occurring in the brain at sexual maturity. Conclusions: This study shows that the brains of eels undergo major changes at the molecular level at sexual maturity that may include re-organization at the cellular level. Here, we have defined a set of genes that help to understand the molecular mechanisms controlling reproduction in eels. Some of these genes have previously described functions while many others have roles that have yet to be characterized in a reproductive context. Since most of the genes examined here have orthologs in other vertebrates, the results of this study will contribute to the body of knowledge concerning reproduction in vertebrates as well as to an improved understanding of eel biology.
- Development of an oligo DNA microarray for the European sea bass and its application to expression profiling of jaw deformityPublication . Ferraresso, Serena; Milan, Massimo; Pellizzari, Caterina; Vitulo, Nicola; Reinhardt, Richard; Canario, Adelino V. M.; Patarnello, T.; Bargelloni, LucaAbstract Background The European sea bass (Dicentrarchus labrax) is a marine fish of great importance for fisheries and aquaculture. Functional genomics offers the possibility to discover the molecular mechanisms underlying productive traits in farmed fish, and a step towards the application of marker assisted selection methods in this species. To this end, we report here on the development of an oligo DNA microarray for D. labrax. Results A database consisting of 19,048 unique transcripts was constructed, of which 12,008 (63%) could be annotated by similarity and 4,692 received a GO functional annotation. Two non-overlapping 60mer probes were designed for each unique transcript and in-situ synthesized on glass slides using Agilent SurePrint™ technology. Probe design was positively completed for 19,035 target clusters; the oligo microarray was then applied to profile gene expression in mandibles and whole-heads of fish affected by prognathism, a skeletal malformation that strongly affects sea bass production. Statistical analysis identified 242 transcripts that are significantly down-regulated in deformed individuals compared to normal fish, with a significant enrichment in genes related to nervous system development and functioning. A set of genes spanning a wide dynamic range in gene expression level were selected for quantitative RT-PCR validation. Fold change correlation between microarray and qPCR data was always significant. Conclusions The microarray platform developed for the European sea bass has a high level of flexibility, reliability, and reproducibility. Despite the well known limitations in achieving a proper functional annotation in non-model species, sufficient information was obtained to identify biological processes that are significantly enriched among differentially expressed genes. New insights were obtained on putative mechanisms involved on mandibular prognathism, suggesting that bone/nervous system development might play a role in this phenomenon.
- mRNA-Seq and microarray development for the Grooved carpet shell clam, Ruditapes decussatus: a functional approach to unravel host -parasite interactionPublication . Leite, Ricardo; Milan, Massimo; Coppe, Alessandro; Bortoluzzi, Stefania; Dos Anjos, António; Reinhardt, Richard; Saavedra, Carlos; Patarnello, T.; Cancela, Leonor; Bargelloni, LucaBackground: The Grooved Carpet shell clam Ruditapes decussatus is the autochthonous European clam and the most appreciated from a gastronomic and economic point of view. The production is in decline due to several factors such as Perkinsiosis and habitat invasion and competition by the introduced exotic species, the manila clam Ruditapes philippinarum. After we sequenced R. decussatus transcriptome we have designed an oligo microarray capable of contributing to provide some clues on molecular response of the clam to Perkinsiosis. Results: A database consisting of 41,119 unique transcripts was constructed, of which 12,479 (30.3%) were annotated by similarity. An oligo-DNA microarray platform was then designed and applied to profile gene expression in R. decussatus heavily infected by Perkinsus olseni. Functional annotation of differentially expressed genes between those two conditionswas performed by gene set enrichment analysis. As expected, microarrays unveil genes related with stress/infectious agents such as hydrolases, proteases and others. The extensive role of innate immune system was also analyzed and effect of parasitosis upon expression of important molecules such as lectins reviewed.Conclusions: This study represents a first attempt to characterize Ruditapes decussatus transcriptome, an important marine resource for the European aquaculture. The trancriptome sequencing and consequent annotation will increase the available tools and resources for this specie, introducing the possibility of high throughput experiments such as microarrays analysis. In this specific case microarray approach was used to unveil some important aspects of host-parasite interaction between the Carpet shell clam and Perkinsus, two non-model species, highlighting some genes associated with this interaction. Ample information was obtained to identify biological processes significantly enriched among differentially expressed genes in Perkinsus infected versus non-infected gills. An overview on the genes related with the immune system on R. decussatus transcriptome is also reported.
- Skin healing and scale regeneration in fed and unfed sea bream, Sparus auratusPublication . Vieira, Florbela A.; Gregorio, Silvia; Ferraresso, Serena; Thorne, Michael A. S.; Costa, Rita; Milan, Massimo; Bargelloni, Luca; Clark, M. S.; Canario, Adelino V. M.; Power, DeborahAbstract Background Fish scales are an important reservoir of calcium and phosphorus and together with the skin function as an integrated barrier against environmental changes and external aggressors. Histological studies have revealed that the skin and scales regenerate rapidly in fish when they are lost or damaged. In the present manuscript the histological and molecular changes underlying skin and scale regeneration in fed and fasted sea bream (Sparus auratus) were studied using a microarray 3 and 7 days after scale removal to provide a comprehensive molecular understanding of the early stages of these processes. Results Histological analysis of skin/scales revealed 3 days after scale removal re-epithelisation and formation of the scale pocket had occurred and 53 and 109 genes showed significant up or down-regulation, respectively. Genes significantly up-regulated were involved in cell cycle regulation, cell proliferation and adhesion, immune response and antioxidant activities. 7 days after scale removal a thin regenerated scale was visible and only minor changes in gene expression occurred. In animals that were fasted to deplete mineral availability the expression profiles centred on maintaining energy homeostasis. The utilisation of fasting as a treatment emphasised the competing whole animal physiological requirements with regard to barrier repair, infection control and energy homeostasis. Conclusions The identification of numerous genes involved in the mitotic checkpoint and cell proliferation indicate that the experimental procedure may be useful for understanding cell proliferation and control in vertebrates within the context of the whole animal physiology. In response to skin damage genes of immune surveillance were up-regulated along with others involved in tissue regeneration required to rapidly re-establish barrier function. Additionally, candidate fish genes were identified that may be involved in cytoskeletal re-modelling, mineralization and stem cells, which are of potential use in aquaculture and fish husbandry, as they may impact on the ability of the fish to produce structural proteins, such as muscle, efficiently.
- Transcriptional profiling of populations in the clam Ruditapes decussatus suggests genetically determined differentiation in gene expression along parallel temperature gradients and between races of the Atlantic ocean and west Mediterranean seaPublication . Saavedra, Carlos; Milan, Massimo; M. Leite, Ricardo; Cordero, David; Patarnello, Tomaso; Cancela, M. Leonor; Bargelloni, LucaOngoing ocean warming due to climate change poses new challenges for marine life and its exploitation. We have used transcriptomics to find genetically based responses to increased temperature in natural populations of the marine clam Ruditapes decussatus, which lives along parallel thermal gradients in southern Europe. Clams of the Atlantic and West Mediterranean races were collected in northern (cool) and a southern (warm) localities. The animals were kept in running seawater in the warm, southern Atlantic locality for a 15-week period. During this period, water temperature was raised to typical southern European summer values. After this period, an expression profile was obtained for a total of 34 clams and 11,025 probes by means of an oligonucleotide microarray. We found distinct transcriptional patterns for each population based on a total of 552 differentially expressed genes (DEGs), indicating innate differences which probably have a genetic basis. Race and latitude contributed significantly to gene expression differences, with very different sets of DEGs. A gene ontology analysis showed that races differed mainly in the genes involved in ribosomal function and protein biosynthesis, while genes related to glutathione metabolism and ATP synthesis in the mitochondria were the most outstanding with respect to north/south transcriptional differences.
- Transcriptome sequencing and microarray development for the Manila clam, Ruditapes philippinarum: genomic tools for environmental monitoringPublication . Milan, Massimo; Coppe, Alessandro; Reinhardt, Richard; Cancela, Leonor; Leite, Ricardo; Saavedra, Carlos; Ciofi, Claudio; Chelazzi, Guido; Patarnello, T.; Bortoluzzi, Stefania; Bargelloni, LucaAbstract Background The Manila clam, Ruditapes philippinarum, is one of the major aquaculture species in the world and a potential sentinel organism for monitoring the status of marine ecosystems. However, genomic resources for R. philippinarum are still extremely limited. Global analysis of gene expression profiles is increasingly used to evaluate the biological effects of various environmental stressors on aquatic animals under either artificial conditions or in the wild. Here, we report on the development of a transcriptomic platform for global gene expression profiling in the Manila clam. Results A normalized cDNA library representing a mixture of adult tissues was sequenced using a ultra high-throughput sequencing technology (Roche 454). A database consisting of 32,606 unique transcripts was constructed, 9,747 (30%) of which could be annotated by similarity. An oligo-DNA microarray platform was designed and applied to profile gene expression of digestive gland and gills. Functional annotation of differentially expressed genes between different tissues was performed by enrichment analysis. Expression of Natural Antisense Transcripts (NAT) analysis was also performed and bi-directional transcription appears a common phenomenon in the R. philippinarum transcriptome. A preliminary study on clam samples collected in a highly polluted area of the Venice Lagoon demonstrated the applicability of genomic tools to environmental monitoring. Conclusions The transcriptomic platform developed for the Manila clam confirmed the high level of reproducibility of current microarray technology. Next-generation sequencing provided a good representation of the clam transcriptome. Despite the known limitations in transcript annotation and sequence coverage for non model species, sufficient information was obtained to identify a large set of genes potentially involved in cellular response to environmental stress.