Browsing by Author "Morais, Sofia"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- A new method for the study of essential fatty acid requirements in fish larvaePublication . Morais, Sofia; Conceicao, LuisThis study describes a methodology with potential application in the estimation of essential fatty acid (EFA) requirements of fish larvae. Senegalese sole (Solea senegalensis) larvae were fed, from 16 days after hatching (DAH), on Artemia enriched with different oils, inducing graded dietary concentrations of DHA: (1) soyabean oil, containing no measurable amounts of DHA (NDHA); (2) fish oil, inducing a medium DHA level (MDHA, 3 g DHA/100 g fatty acids); and (3) a mixture of Easy DHA Selco and Microfeed, resulting in high DHA content (HDHA, 8 g/100 g). At 28 DAH a metabolic trial was conducted where larvae were tube fed [1-(14) C]DHA, in order to determine its absorption, retention in the gut and body tissues, as well as its oxidation. At 23 DAH the HDHA treatment induced a significantly higher larval growth, while at 32 DAH significant differences were only found between the NDHA and HDHA treatments. The absorption of tube-fed [1-(14) C]DHA was extremely high (94-95%) and independent of feeding regime. However, in larvae fed NDHA Artemia, a significantly higher amount of label was retained in the gut compartment and a concurrently lower retention was measured in the body. A significantly higher proportion of the absorbed DHA label was oxidized in larvae fed HDHA, compared to NDHA. Based on these results, we suggest that increasing dietary supply of DHA above the larval requirement level results in its increased oxidation for energy purposes and we propose potential applications of the tube feeding methodology using radiolabelled EFA in conjunction with dose-response studies.
- New developments and biological insights into the farming of Solea senegalensis reinforcing its aquaculture potentialPublication . Morais, Sofia; Aragão, C.; Cabrita, Elsa; Conceição, L. E. C.; Constenla, Maria; Costas, Benjamín; Dias, Jorge; Duncan, Neil; Engrola, S.; Estevez, Alicia; Gisbert, Enric; Mañanós, Evaristo; Valente, Luísa M. P.; Yúfera, M.; Dinis, Maria TeresaSenegalese sole was one of the earliest identified candidate species with high potential for aquaculture diversification in the south of Europe. Its culture has been possible, and commercially attempted, for several decades, but intensive production has been slow to take off. This has been explained mostly by serious disease problems, high mortality at weaning, variable growth and poor juvenile quality. However, a strong and sustained research investment that started in the eighties has led to a better understanding of the requirements and particularities of this species. More recently, better management and technical improvements have been introduced, which have led to important progress in productivity and given a new impetus to the cultivation of Senegalese sole. As a result, the last 5 years have marked a probable turning point in the culture of sole towards the development of a knowledge-driven, competitive and sustainable industry. This review will focus on the main technical improvements and advances in the state of knowledge that have been made in the last decade in areas as diverse as reproductive biology, behaviour, physiology, nutritional requirements, modulation of the immune system in response to environmental parameters and stress, and characterization and mitigation of the main disease threats. It is now clear that Senegalese sole has important particularities that differentiate it from other current and candidate marine aquaculture species, which bring about important challenges, some still unsolved, but also notable opportunities (e.g. a nutritional physiology that is better adapted to dietary vegetable ingredients), as will be discussed here.
- Strategy combining mammalian fats with supplementation of pungent spices in aquafeeds, to mitigate negative impacts of fish oil replacement in fish performance, fillet quality and hepatic condition of gilthead seabream (Sparus aurata)Publication . Ruiz, Alberto; Gisbert, Enric; Estevez, Alicia; Reyes-López, Felipe E.; Vallejos-Vidal, Eva; Tort, Lluís; Dias, Jorge; Engrola, Sofia; Magalhães, Sara; Aires, Tiago; Morais, SofiaThe replacement of fish oil (FO) in aquafeeds usually leads to imbalances in the dietary content of n-3 and n-6 polyunsaturated fatty acids (PUFA), with negative consequences for fish performance, health, and fillet quality. Animal-rendered fats are an alternative lipid source high in saturated fatty acids, potentially sparing n-3 PUFA from oxidation, and with lower n-6 PUFA contents than plant-based oils, especially in the case of mammalian fats (MF). Hence, this work assessed the effect of replacing 45% FO by MF (negative control, NC) compared to a diet containing only FO (positive control, PC) in gilthead seabream (Sparus aurata, initial body weight: 85 ± 4 g, mean ± standard deviation) at low water temperature. In addition, we studied the effect of supplementing the NC diet with a combination of pungent spices with hypolipidemic and anti-inflammatory properties at three inclusion levels: 0.05 (SPICY0.05%), 0.1 (SPICY0.1%), and 0.15% (SPICY0.15%). At the end of the trial (112 days), FO substitution by MF led to poorer fish performance in terms of body weight (BW), specific growth rate (SGR), feed conversion ratio (FCR), and protein efficiency ratio (PER). Supplementation of the NC diet with spices numerically improved SGR, FCR and PER at all inclusion levels (non-significantly different from the PC group), being FCR and PER significantly different from the NC group in the SPICY0.1% and SPICY0.15% treatments. A remarkable increase in lipid level was observed in fillets of fish fed the NC diet, but was fully counteracted by spice supplementation, especially in fish fed the SPICY0.15% diet. A lower fat accumulation was also found in the liver of fish fed the SPICY0.1% and SPICY0.15% diets, with respect to the PC and NC groups. The fillets' fatty acid profile mostly reflected the diet composition, but the SPICY0.15% diet modified it in an inverse direction to that observed in the NC, to more closely resemble the profile of fish fed the PC diet. In particular, the SPICY0.15% diet reduced fillet levels of MUFA, linoleic and linolenic acids, and increased n-3 LC-PUFA (including EPA and DHA), compared to the NC. A microarray-based transcriptomic analysis revealed a better hepatic health status, as indicated by different biological processes associated to immunity. Overall, supplementation with the combination of pungent spices at 0.15% enabled the incorporation of alternative lipid sources, such as MF, in aquafeeds without significantly compromising growth and feeding performance, liver health, and quality of the edible product.
- Teleost fish larvae adapt to dietary arachidonic acid supply through modulation of the expression of lipid metabolism and stress response genesPublication . Alves Martins, Dulce; Rocha, Filipa; Martinez-Rodriguez, Gonzalo; Bell, Gordon; Morais, Sofia; Castanheira, Maria Filipa; Bandarra, Narcisa; Coutinho, Joana; Yufera, Manuel; Conceicao, LuisDietary fatty acid supply can affect stress response in fish during early development. Although knowledge on the mechanisms involved in fatty acid regulation of stress tolerance is scarce, it has often been hypothesised that eicosanoid profiles can influence cortisol production. Genomic cortisol actions are mediated by cytosolic receptors which may respond to cellular fatty acid signalling. An experiment was designed to test the effects of feeding gilthead sea-bream larvae with four microdiets, containing graded arachidonic acid (ARA) levels (0.4, 0.8, 1.5 and 3.0 %), on the expression of genes involved in stress response (steroidogenic acute regulatory protein, glucocorticoid receptor and phosphoenolpyruvate carboxykinase), lipid and, particularly, eicosanoid metabolism (hormone-sensitive lipase, PPAR alpha, phospholipase A(2), cyclo-oxygenase-2 and 5-lipoxygenase), as determined by real-time quantitative PCR. Fish fatty acid phenotypes reflected dietary fatty acid profiles. Growth performance, survival after acute stress and similar whole-body basal cortisol levels suggested that sea-bream larvae could tolerate a wide range of dietary ARA levels. Transcription of all genes analysed was significantly reduced at dietary ARA levels above 0.4%. Nonetheless, despite practical suppression of phospholipase A(2) transcription, higher leukotriene B-4 levels were detected in larvae fed 3.0% ARA, whereas a similar trend was observed regarding PGE(2) production. The present study demonstrates that adaptation to a wide range of dietary ARA levels in gilthead sea-bream larvae involves the modulation of the expression of genes related to eicosanoid synthesis, lipid metabolism and stress response. The roles of ARA, other polyunsaturates and eicosanoids as signals in this process are discussed.