Browsing by Author "Nogueira, Lucie S."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- A hydrogen-bonded assembly of cucurbit[6]uril and [MoO2Cl2(H2O)(2)] with catalytic efficacy for the one-pot conversion of olefins to alkoxy productsPublication . Nogueira, Lucie S.; Antunes, Margarida M.; Gomes, Ana C.; Cunha-Silva, Luis; Pillinger, Martyn; Lopes, Andre D.; Valente, Anabela A.; Goncalves, Isabel S.The reaction of the macrocyclic cavitand cucurbit[6]uril (CB[6]) and the diaqua complex [MoO2Cl2(H2O)(2)] in hydrochloric acid solution gave a water insoluble supramolecular compound with the general composition 2[MoO2Cl2(H2O)(2)]center dot CB[6]center dot xH(2)O center dot yHCl center dot z(CH3COCH3) (2). Single crystal X-ray diffraction (XRD) analysis revealed the presence of barrel-shape supramolecular entities, {CB[6]center dot 10(H2O)}, aligned in layers which are shifted relative to adjacent layers to form a brick-like pattern. The CB[6]/water hydrogen-bonded entities further engage in intermolecular interactions with water, HCl and [MoO2Cl2(H2O)(2)] molecules to form a three-dimensional (3D) framework. Compound 2 was characterised by thermogravimetric analysis (TGA), IR and Raman vibrational spectroscopy, and C-13{H-1} CP MAS NMR. The reference complex [MoO2Cl2(H2O)(2)]center dot(diglyme)(2) (1) and compound 2 were studied for the oxidative catalytic conversion of olefins (cis-cyclooctene, cyclohexene and styrene) with aqueous H2O2 as oxidant. Using alcohols as solvents, 2 was employed in a one-pot two-stage strategy for converting olefins to alkoxy products, which involves oxidation (with H2O2) and acid chemistry. Mechanistic studies were carried out using different intermediates as substrates, and the type of solvent and substrate scope were investigated. The results demonstrated the ability of the CB[6]/Mo-VI supramolecular adduct to function as an acid-oxidation multifunctional catalyst, and its recovery and reuse via relatively simple procedures.
- Chemistry and catalytic performance of pyridyl-benzimidazole oxidomolybdenum(VI) compounds in (bio)olefin epoxidationPublication . Neves, Patricia; Nogueira, Lucie S.; Gomes, Ana C.; Oliveira, Tânia S. M.; Lopes, Andre D.; Valente, Anabela A.; Gonçalves, Isabel S.; Pillinger, MartynThe chemistry and catalytic performance of the dichlorido complex [MoO2Cl2(pbim)] (1) [pbim = 2-(2-pyridyl)benzimidazole] in the epoxidation of olefins is reported. Complex 1 acts as a precatalyst and is more effective with tert-butyl-hydroperoxide (TBHP) as the oxidant than with aq. hydrogen peroxide: the cis-cyclooctene (Cy) reaction with TBHP gave 98 % epoxide yield at 70 degrees C/24 h. Catalyst characterization showed that 1 is transformed in situ to the oxidodiperoxido complex [MoO(O-2)(2)(pbim)] (2), with H2O2 and a hybrid molybdenum(VI) oxide solid formulated as [MoO3(pbim)] (3) with TBHP. The hybrid material 3 was prepared on a larger scale and explored for the epoxidation of the biorenewable olefins methyl oleate, methyl linoleate, and (R)-(+)-limonene. With TBHP as the oxidant, 3 acts as a source of soluble active species of the type 2. A practical method for recycling oxidodiperoxidomolybdenum(VI) catalysts for the Cy/TBHP reaction is demonstrated by using an ionic liquid as the solvent for the molecular catalyst 2.