Browsing by Author "Pereira, Ana"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Against all odds: a tale of marine range expansion with maintenance of extremely high genetic diversityPublication . Robalo, Joana I.; Francisco, Sara M.; Vendrell, Catarina; Lima, Cristina S.; Pereira, Ana; Brunner, Benedikt; Dia, Mamadou; Gordo, Leonel; Castilho, RitaThe displacement of species from equatorial latitudes to temperate locations following the increase in sea surface temperatures is among the significant reported consequences of climate change. Shifts in the distributional ranges of species result in fish communities tropicalisation, i.e., high latitude colonisations by typically low latitude distribution species. These movements create new interactions between species and new trophic assemblages. The Senegal seabream, Diplodus bellottii, may be used as a model to understand the population genetics of these invasions. In the last decades, this species has undergone an outstanding range expansion from its African area of origin to the Atlantic coast of the Iberian Peninsula, where now occurs abundantly. Mitochondrial and nuclear markers revealed a striking high haplotypic nucleotide and genetic diversity values, along with significant population differentiation throughout the present-day geographical range of the Senegal seabream. These results are not consistent with the central-marginal hypothesis, nor with the expectations of a leptokurtic distribution of individuals, as D. bellottii seems to be able to retain exceptional levels of diversity in marginal and recently colonised areas. We discuss possible causes for hyperdiversity and lack of geographical structure and subsequent implications for fisheries.
- Probing cellulose–solvent interactions with self-diffusion NMR: Onium hydroxide concentration and co-solvent effectsPublication . Medronho, Bruno; Pereira, Ana; Duarte, Hugo; Gentile, L.; Rosa Da Costa, Ana; Romano, A; Olsson, U.The molecular self-diffusion coefficients were accessed, for the first time, in solutions of microcrystalline cel-lulose, dissolved in 30 wt% and 55 wt% aqueous tetrabutylammonium hydroxide, TBAH (aq), and in mixtures of 40 wt% TBAH (aq) with an organic co-solvent, dimethylsulfoxide (DMSO), through pulsed field gradient stim-ulated echo NMR measurements. A two-state model was applied to estimate alpha (i.e., average number of ions that "bind" to each anhydroglucose unit) and Pb (i.e., fraction of "bound" molecules of DMSO, TBAH or H2O to cellulose) parameters. The alpha values suggest that TBA+ ions can bind to cellulose within 0.5 TBA+ to 2.3 TBA+/ AGU. On the other hand, the Pb parameter increases when raising cellulose concentration for TBA+, DMSO and water in all solvent systems. Data suggests that TBAH interacts with the ionized OH groups from cellulose forming a sheath of bulky TBA+ counterions which consequently leads to steric hindrance between cellulose chains.
