Browsing by Author "Piedade, R."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Cytochrome 1A1 and 1B1 gene diversity in the Zanzibar islandsPublication . Cavaco, I.; Piedade, R.; Msellem, M. I.; Bjorkman, A.; Gil, José PedroAmodiaquine (AQ) is a 4-aminoquinoline widely used in the treatment of malaria as part of the artemisinin combination therapy (ACT). AQ is metabolised towards its main metabolite desethylamodiaquine mainly by cytochrome P450 2C8 (CYP2C8). CYP1A1 and CYP1B1 play a minor role in the metabolism but they seem to be significantly involved in the formation of the short-lived quinine-imine. To complete the genetic variation picture of the main genes involved in AQ metabolism in the Zanzibar population, previously characterised for CYP2C8, we analysed in this study CYP1A1 and CYP1B1 main genetic polymorphisms. The results obtained show a low frequency of the CYP1A1*2B/C allele (2.4%) and a high frequency of CYP1B1*6 (approximately 42%) followed by CYP1B1*2 (approximately 27%) in Zanzibar islands. Genotype data for CYP1A1 and CYP1B1 show a low incidence of fast metabolisers, revealing a relatively safe genetic background in Zanzibars population regarding the appearance of adverse effects.
- Differential effects of clinically used derivatives and metabolites of artemisinin in the activation of constitutive androstane receptor isoformsPublication . Burk, O.; Piedade, R.; Ghebreghiorghis, L.; Fait, J. T.; Nussler, A. K.; Gil, J. P.; Windshuegel, B.; Schwab, M.BACKGROUND AND PURPOSE Widespread resistance to antimalarial drugs requires combination therapies with increasing risk of pharmacokinetic drugdrug interactions. Here, we explore the capacity of antimalarial drugs to induce drug metabolism via activation of constitutive androstane receptors (CAR) by ligand binding. EXPERIMENTAL APPROACH A total of 21 selected antimalarials and 11 major metabolites were screened for binding to CAR isoforms using cellular and in vitro CAR-coactivator interaction assays, combined with in silico molecular docking. Identified ligands were further characterized by cell-based assays and primary human hepatocytes were used to elucidate induction of gene expression. KEY RESULTS Only two artemisinin derivatives arteether and artemether, the metabolite deoxyartemisinin and artemisinin itself demonstrated agonist binding to the major isoforms CAR1 and CAR3, while arteether and artemether were also inverse agonists of CAR2. Dihydroartemisinin and artesunate acted as weak inverse agonists of CAR1. While arteether showed the highest activities in vitro, it was less active than artemisinin in inducing hepatic CYP3A4 gene expression in hepatocytes. CONCLUSIONS AND IMPLICATIONS Artemisinin derivatives and metabolites differentially affect the activities of CAR isoforms and of the pregnane X receptor (PXR). This negates a common effect of these drugs on CAR/PXR-dependent induction of drug metabolism and further provides an explanation for artemisinin consistently inducing cytochrome P450 genes in vivo, whereas arteether and artemether do not. All these drugs are metabolized very rapidly, but only artemisinin is converted to an enzyme-inducing metabolite. For better understanding of pharmacokinetic drugdrug interaction possibilities, the inducing properties of artemisinin metabolites should be considered.