Browsing by Author "Reis, Alberto"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Impact of high-pressure homogenization on the cell integrity of tetradesmus obliquus and seed germinationPublication . Ferreira, Alice; Figueiredo, Daniel; Ferreira, Francisca; Ribeiro, Belina; Reis, Alberto; da Silva, Teresa Lopes; Gouveia, LuisaMicroalgae have almost unlimited applications due to their versatility and robustness to grow in different environmental conditions, their biodiversity and variety of valuable bioactive compounds. Wastewater can be used as a low-cost and readily available medium for microalgae, while the latter removes the pollutants to produce clean water. Nevertheless, since the most valuable metabolites are mainly located inside the microalga cell, their release implies rupturing the cell wall. In this study, Tetradesmus obliquus grown in 5% piggery effluent was disrupted using high-pressure homogenization (HPH). Effects of HPH pressure (100, 300, and 600 bar) and cycles (1, 2 and 3) were tested on the membrane integrity and evaluated using flow cytometry and microscopy. In addition, wheat seed germination trials were carried out using the biomass at different conditions. Increased HPH pressure or number of cycles led to more cell disruption (75% at 600 bar and 3 cycles). However, the highest increase in wheat germination and growth (40-45%) was observed at the lowest pressure (100 bar), where only 46% of the microalga cells were permeabilised, but not disrupted. Non-treated T. obliquus cultures also revealed an enhancing effect on root and shoot length (up to 40%). The filtrate of the initial culture also promoted shoot development compared to water (21%), reinforcing the full use of all the process fractions. Thus, piggery wastewater can be used to produce microalgae biomass, and mild HPH conditions can promote cell permeabilization to release sufficient amounts of bioactive compounds with the ability to enhance plant germination and growth, converting an economic and environmental concern into environmentally sustainable applications.
- Primary brewery wastewater as feedstock for the yeast Rhodosporidium toruloides and the microalga Tetradesmus obliquus mixed cultures with lipid productionPublication . Dias, Carla; Reis, Alberto; Santos, José A.L.; Gouveia, Luisa; Lopes da Silva, TeresaRhodosporidium toruloides and Tetradesmus obliquus pure and mixed cultures were grown on primary brewery wastewater (PBWW), with and without supplementation of sugarcane molasses (SCM) and urea. R. toruloides developed in pure cultures was not able to grow on PBWW, with or without supplementation, but grew in mixed cultures with the micmalga T. obliquus in all media. In contrast, all T. obliquus pure cultures developed on PBWW, with and without supplementation, were able to develop. Higher biomass productivity (149.3 mg L-1 h(-1)) was obtained for the mixed culture using PBWW supplemented with 10 g L-1 of SCM and 2 g L-1 of urea. Therefore, a strategy to stimulate lipid production by R. toruloides and T. obliquus grown in mixed cultures with higher SCM concentrations (20, 40 and 100 g L-1 of SCM) was developed. The maximum lipid content (26.3 % (w/w DCW)) was obtained for the mixed culture developed on PBWW, supplemented with 100 g L-1 of SCM plus 2 g L-1 of urea, at t = 121 h. This work demonstrated the feasibility of using PBWW supplemented with SCM and urea as culture medium to grow R. toruloides and T. obliquus and to produce microbial lipids.
- Production of mannosylerythritol lipids using oils from oleaginous microalgae: two sequential microorganism culture approachPublication . Nascimento, Miguel Figueiredo; Coelho, Tiago; Reis, Alberto; Gouveia, Luísa; Faria, Nuno Torres; Ferreira, Frederico CasteloMannosylerythritol lipids (MELs) are biosurfactants with excellent biochemical properties and a wide range of potential applications. However, most of the studies focusing on MELs high titre production have been relying in the use of vegetable oils with impact on the sustainability and process economy. Herein, we report for the first time MELs production using oils produced from microalgae. The bio-oil was extracted from Neochloris oleoabundans and evaluated for their use as sole carbon source or in a co-substrate strategy, using as an additional carbon source D-glucose, on Moesziomyces spp. cultures to support cell growth and induce the production of MELs. Both Moesziomyces antarcticus and M. aphidis were able to grow and produce MELs using algae-derived bio-oils as a carbon source. Using a medium containing as carbon sources 40 g/L of D-glucose and 20 g/L of bio-oils, Moesziomyces antarcticus and M. aphidis produced 12.47 +/- 0.28 and 5.72 +/- 2.32 g/L of MELs, respectively. Interestingly, there are no significant differences in productivity when using oils from microalgae or vegetable oils as carbon sources. The MELs productivities achieved were 1.78 +/- 0.04 and 1.99 +/- 0.12 g/L/h, respectively, for M. antarcticus fed with algae-derived or vegetable oils. These results open new perspectives for the production of MELs in systems combining different microorganisms.
- Rhodosporidium toruloides and Tetradesmus obliquus populations dynamics in symbiotic cultures, developed in brewery wastewater, for lipid productionPublication . Dias, Carla; Gouveia, Luisa; Santos, José A. L.; Reis, Alberto; da Silva, Teresa LopesIn this work, primary brewery wastewater (PBWW) and secondary brewery wastewater (SBWW) separately, or mixed at the ratios of 1:1 (PBWW:SBWW) and 1:7 (PBWW:SBWW), with or without supplementation with sugarcane molasses (SCM), were used as culture media for lipid production by a mixed culture of the oleaginous yeast Rhodosporidium toruloides NCYC 921 and the microalgae Tetradesmus obliquus (ACOI 204/07). Flow cytometry was used to understand the dynamics of the two micro-organisms during the mixed cultures evolution, as well as to evaluate the physiological states of each microorganism, in order to assess the impact of the different brewery effluent media composition on the microbial consortium performance. Both brewery wastewaters (primary and secondary) without supplementation did not allow R. toruloides heterotrophic growth. Nevertheless, all brewery wastewater media, with and without SCM supplementation, allowed the microalgae growth, although the yeast was the dominant population. The maximum total biomass concentration of 2.17 g L-1 was achieved in the PBWW mixed cultivation with 10 g L-1 of SCM. The maximum lipid content (14.86% (w/w DCW)) was obtained for the mixed culture developed on SBWW supplemented with 10 g L-1 of SCM. This work demonstrated the potential of using brewery wastewater supplemented with SCM as a low-cost culture medium to grow R. toruloides and T. obliquus in a mixed culture for brewery wastewater treatment with concomitant lipid production.