Browsing by Author "Reis, Rui L."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Altered bone microarchitecture in a type 1 diabetes mouse model Ins2 (Akita)Publication . Pires De Carvalho, Filipe Ricardo; Calado, Sofia; Silva, Gabriela A.; Diogo, Gabriela S.; Moreira da Silva, Joana; Reis, Rui L.; Cancela, M. Leonor; Gavaia, PauloType 1 diabetes mellitus (T1DM) has been associated to several cartilage and bone alterations including growth retardation, increased fracture risk, and bone loss. To determine the effect of long term diabetes on bone we used adult and aging Ins2 Akita mice that developed T1DM around 3-4 weeks after birth. Both Ins2 Akita and wild-type (WT) mice were analyzed at 4, 6, and 12 months to assess bone parameters such as femur length, growth plate thickness and number of mature and preapoptotic chondrocytes. In addition, bone microarchitecture of the cortical and trabecular regions was measured by microcomputed tomography and gene expression of Adamst-5, Col2, Igf1, Runx2, Acp5, and Oc was quantified by quantitative real-time polymerase chain reaction. Ins2 Akita mice showed a decreased longitudinal growth of the femur that was related to decreased growth plate thickness, lower number of chondrocytes and to a higher number of preapoptotic cells. These changes were associated with higher expression of Adamst-5, suggesting higher cartilage degradation, and with low expression levels of Igf1 and Col2 that reflect the decreased growth ability of diabetic mice. Ins2 Akita bone morphology was characterized by low cortical bone area (Ct.Ar) but higher trabecular bone volume (BV/TV) and expression analysis showed a downregulation of bone markers Acp5, Oc, and Runx2. Serum levels of insulin and leptin were found to be reduced at all-time points Ins2 Akita . We suggest that Ins2 Akita mice bone phenotype is caused by lower bone formation and even lower bone resorption due to insulin deficiency and to a possible relation with low leptin signaling.
- Quantitative assessment of the regenerative and mineralogenic performances of the zebrafish caudal finPublication . Cardeira Da Silva, João; Gavaia, Paulo J.; Fernandez, Ignacio; Cengiz, Ibrahim Fatih; Moreira-Silva, Joana; Oliveira, Joaquim Miguel; Reis, Rui L.; Cancela, Leonor; Laizé, VincentThe ability of zebrafish to fully regenerate its caudal fin has been explored to better understand the mechanisms underlying de novo bone formation and to develop screening methods towards the discovery of compounds with therapeutic potential. Quantifying caudal fin regeneration largely depends on successfully measuring new tissue formation through methods that require optimization and standardization. Here, we present an improved methodology to characterize and analyse overall caudal fin and bone regeneration in adult zebrafish. First, regenerated and mineralized areas are evaluated through broad, rapid and specific chronological and morphometric analysis in alizarin red stained fins. Then, following a more refined strategy, the intensity of the staining within a 2D longitudinal plane is determined through pixel intensity analysis, as an indicator of density or thickness/volume. The applicability of this methodology on live specimens, to reduce animal experimentation and provide a tool for in vivo tracking of the regenerative process, was successfully demonstrated. Finally, the methodology was validated on retinoic acid-and warfarin-treated specimens, and further confirmed by micro-computed tomography. Because it is easily implementable, accurate and does not require sophisticated equipment, the present methodology will certainly provide valuable technical standardization for research in tissue engineering, regenerative medicine and skeletal biology.