Browsing by Author "Reis, Rui Manuel"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Brachyury as a potential modulator of androgen receptor activity and a key player in therapy resistance in prostate cancerPublication . Pinto, Filipe; Pertega-Gomes, Nelma; Vizcaino, Jose R.; Andrade, Raquel P.; Carcano, Flávio M.; Reis, Rui ManuelProstate cancer (PCa) is the most commonly diagnosed neoplasm and the second leading cause of cancer-related deaths in men. Acquisition of resistance to conventional therapy is a major problem for PCa patient management. Several mechanisms have been described to promote therapy resistance in PCa, such as androgen receptor (AR) activation, epithelial-to-mesenchymal transition (EMT), acquisition of stem cell properties and neuroendocrine transdifferentiation (NEtD). Recently, we identified Brachyury as a new biomarker of PCa aggressiveness and poor prognosis. In the present study we aimed to assess the role of Brachyury in PCa therapy resistance. We showed that Brachyury overexpression in prostate cancer cells lines increased resistance to docetaxel and cabazitaxel drugs, whereas Brachyury abrogation induced decrease in therapy resistance. Through ChiP-qPCR assays we further demonstrated that Brachyury is a direct regulator of AR expression as well as of the biomarker AMACR and the mesenchymal markers Snail and Fibronectin. Furthermore, in vitro Brachyury was also able to increase EMT and stem properties. By in silico analysis, clinically human Brachyury-positive PCa samples were associated with biomarkers of PCa aggressiveness and therapy resistance, including PTEN loss, and expression of NEtD markers, ERG and Bcl-2. Taken together, our results indicate that Brachyury contributes to tumor chemotherapy resistance, constituting an attractive target for advanced PCa patients.
- Brachyury Is associated with glioma differentiation and response to temozolomidePublication . Pinto, Filipe; Costa, Angela M.; Andrade, Raquel P.; Reis, Rui ManuelGlioblastomas (GBMs) are the most aggressive tumor type of the central nervous system, mainly due to their high invasiveness and innate resistance to radiotherapy and chemotherapy, with temozolomide (TMZ) being the current standard therapy. Recently, brachyury was described as a novel tumor suppressor gene in gliomas, and its loss was associated with increased gliomagenesis. Here, we aimed to explore the role of brachyury as a suppressor of glioma invasion, stem cell features, and resistance to TMZ. Using gene-edited glioma cells to overexpress brachyury, we found that brachyury-positive cells exhibit reduced invasive and migratory capabilities and stem cell features. Importantly, these brachyury-expressing cells have increased expression of differentiation markers, which corroborates the results from human glioma samples andin vivotumors. Glioma cells treated with retinoic acid increased the differentiation status with concomitant increased expression of brachyury. We then selected TMZ-resistant (SNB-19) and TMZ-responsive (A172 and U373) cell lines to evaluate the role of brachyury in the response to TMZ treatment. We observed that both exogenous and endogenous brachyury activation, through overexpression and retinoic acid treatment, are associated with TMZ sensitization in glioma-resistant cell lines. In this study, we demonstrate that brachyury expression can impair aggressive glioma features associated with treatment resistance. Finally, we provide the first evidence that brachyury can be a potential therapeutic target in GBM patients who do not respond to conventional chemotherapeutic drugs.