Browsing by Author "Rufino, M. M."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Sinking diatom assemblages as a key driver for deep carbon and silicon export in the Scotia Sea (Southern Ocean)Publication . Zúñiga, D.; Sanchez-Vidal, A.; Flexas, M. M.; Carroll, D.; Rufino, M. M.; Spreen, G.; Calafat, A.; Abrantes, F.Physical and biogeochemical processes in the Southern Ocean are fundamental for modulating global climate. In this context, a process-based understanding of how Antarctic diatoms control primary production and carbon export, and hence global ocean carbon sequestration, has been identified as a scientific priority. Here we use novel sediment trap observations in combination with a data-assimilative ocean biogeochemistry model (ECCO-Darwin) to understand how environmental conditions trigger diatom ecology in the iron-fertilized southern Scotia Sea. We unravel the role of diatoms assemblage in controlling the biogeochemistry of sinking material escaping from the euphotic zone, and discuss the link between changes in upper-ocean environmental conditions and the composition of settling material exported from the surface to 1,000 m depth from March 2012 to January 2013. The combined analysis of in situ observations and model simulation suggests that an anomalous sea-ice episode in early summer 2012–2013 favored (via restratification due to sea-ice melt) an early massive bloom of Corethron pennatum that rapidly sank to depth. This event drove high biogenic silicon to organic carbon export ratios, while modulating the carbon and nitrogen isotopic signals of sinking organic matter reaching the deep ocean. Our findings highlight the role of diatom ecology in modulating silicon vs. carbon sequestration efficiency, a critical factor for determining the stoichiometric relationship of limiting nutrients in the Southern Ocean.
- The influence of coastal processes on inner shelf sediment distribution: The Eastern Algarve Shelf (Southern Portugal)Publication . Rosa, F.; Rufino, M. M.; Ferreira, O.; Matias, Ana; Brito, Ana C.; Gaspar, MiguelThis study examines sediment distribution patterns in the Southeastern Algarve inner shelf (southern Portugal), an area characterized by marked variations in its coastal environment and low continental supply of sediments. The specific goals of this study were to identify the principal sediment sources and the factors influencing sediment transport paths and deposition. A total of 199 samples, collected along the shelf from the Guadiana River mouth to Olhos de Agua, were analyzed. Grain-size distribution and parameters were measured for all the samples. Terrigenous and biogenic components of sand were identified in 38 samples, and results analyzed using multivariate non-linear multidimension scaling (MDS) and cluster analysis. Patterns of sediment distribution in this area of the inner shelf vary according to water depth and exhibit significant longshore variation, related mainly to coastal processes (littoral drift and storm currents) and to a lower degree to sediment sources. Sand is dominant at all depths, reflecting the influence of littoral drift in the supply and redistribution of shelf sediments. Fine and gravel-sized deposits are significant in specific areas and are usually associated with changes in sediment composition. Five sectors have been identified according to sedimentary dynamics. The results, based on geostatistical and multivariate analysis, have allowed detailed sediment distribution maps to be generated, which represent an update of the existing cartography and serve as a tool for the management of coastal and marine resources. They have been furthermore compared with inner shelf sediment dynamics in other regions worldwide, to distinguish between specific regional responses to forcing mechanisms and processes that are more generalized within this type of shelf environments. In this context, the results obtained results in the Algarve study area are of great interest for the understanding of sediment dynamics of sand dominated inner shelves with reduced continental supply.