Browsing by Author "Schrama, Denise"
Now showing 1 - 10 of 30
Results Per Page
Sort Options
- A Proteomics and other Omics approach in the context of farmed fish welfare and biomarker discoveryPublication . Raposo de Magalhães, Cláudia; Cerqueira, Marco; Schrama, Denise; Moreira, Márcio; Boonanuntanasarn, Surintorn; Rodrigues, PedroThe rapid and intensive growth of aquaculture over the last decade, poses a tremendous challenge to this industry in order to comply with the latest guidelines, established to minimise its negative effects on the environment, animal welfare and public health. Farmed fish welfare has become one of the main priorities towards sustainable aquaculture production with several initiatives launched by the European Union within the framework of the 2030 agenda. It is clear that an unbiased and reliable way to access farmed fish welfare needs to be implemented due to the lack of reliable indicators and standardised methods that are used at present. In this review, we start by addressing the status quo of animal and fish welfare definition in particular, describing the methods and assays currently used to measure it. We then explain why we believe these methods are unreliable and why there is a need to establish new ones that will promote productivity and consumer's acceptance of farmed fish. The establishment of a new type of welfare biomarkers using cutting-edge technologies like proteomics and other omics technologies is proposed as a solution to this issue. Therefore, we provide a brief description of these new methodologies, describing for each one how they can improve our scientific knowledge and the role they can play in farmed fish welfare biomarker discovery.
- Adaptation of Listeria monocytogenes in a simulated cheese medium: effects on virulence using the Galleria mellonella infection modelPublication . Schrama, Denise; Helliwell, N.; Neto, L.; Faleiro, Maria LeonorThe aim of this study was to evaluate the effect of the acid and salt adaptation in a cheese-based medium on the virulence potential of Listeria monocytogenes strains isolated from cheese and dairy processing environment using the Galleria mellonella model. Four L.monocytogenes strains were exposed to a cheese-based medium in conditions of induction of an acid tolerance response and osmotolerance response (pH 5 center dot 5 and 3 center dot 5% w/v NaCl) and injected in G.mellonella insects. The survival of insects and the L.monocytogenes growth kinetics in insects were evaluated. The gene expression of hly, actA and inlA genes was determined by real-time PCR. The adapted cells of two dairy strains showed reduced insect mortality (P<0 center dot 05) in comparison with nonadapted cells. Listeria monocytogenes Scott A was the least virulent, whereas the cheese isolate C882 caused the highest insect mortality, and no differences (0 center dot 05) was found between adapted and nonadapted cells. The gene expression results evidenced an overexpression of virulence genes in cheese-based medium, but not in simulated insect-induced conditions. Our results suggest that adaptation to low pH and salt in a cheese-based medium can affect the virulence of L.monocytogenes, but this effect is strain dependent. Significance and Impact of the Study In this study, the impact of adaptation to low pH and salt in a cheese-based medium on L.monocytogenes virulence was tested using the Wax Moth G.mellonella model. This model allowed the differentiation of the virulence potential between the L.monocytogenes strains. The effect of adaptation on virulence is strain dependent. The G.mellonella model revealed to be a prompt method to test food-related factors on L.monocytogenes virulence.
- Amyloodiniosis in aquaculture: A reviewPublication . Moreira, Márcio; Costas, Benjamín; Rodrigues, Pedro; Lourenço‐Marques, Cátia; Sousa, Rui; Schrama, Denise; Raposo de Magalhães, Cláudia; Farinha, Ana Paula; Soares, FlorbelaFish ectoparasites are one of the pathogens groups that pose great concern to the aquaculture industry. The dinoflagellate Amyloodinium ocellatum is responsible for amyloodiniosis, a parasitological disease with a strong economic impact in temperate and warm water aquaculture, mainly in earthen pond semi-intensive systems. Amyloodiniosis represents one of the most important bottlenecks for aquaculture and, with the predictable expansion of the area of influence of this parasite to higher latitudes due to global warming it might also be a threat to other aquaculture species that are not yet parasitized by A. ocellatum. This review made a compilation of the existing knowledge about this parasite and the disease associated with it. It was noticed that, except from the life cycle characterisation, detection methods, histopathological analysis, and treatments, there are still a lot of areas that need a further investment in research. Areas like parasite-host interactions, epidemiological models, taxonomy, host physiological responses to parasitism, and genome sequencing, amongst others, can contribute to a better understanding of this disease. These proposed approaches and routes of investigation will enhance and contribute to a more standardised knowledge, creating the opportunity for a better understanding of amyloodiniosis impacts on fish and contributing for the development of new tools against A. ocellatum, that may reduce fish mortality in aquaculture production due to amyloodiniosis outbreaks.
- Are Physicochemical Properties Shaping the Allergenic Potency of Animal Allergens?Publication . Costa, Joana; Villa, Caterina; Verhoeckx, Kitty; Cirkovic-Velickovic, Tanja; Schrama, Denise; Roncada, Paola; Rodrigues, Pedro M.; Piras, Cristian; Martin-Pedraza, Laura; Monaci, Linda; Molina, Elena; Mazzucchelli, Gabriel; Mafra, Isabel; Lupi, Roberta; Lozano-Ojalvo, Daniel; Larre, Colette; Klueber, Julia; Gelencser, Eva; Bueno-Diaz, Cristina; Diaz-Perales, Araceli; Benede, Sara; Bavaro, Simona Lucia; Kuehn, Annette; Hoffmann-Sommergruber, Karim; Holzhauser, ThomasKey determinants for the development of an allergic response to an otherwise 'harmless' food protein involve different factors like the predisposition of the individual, the timing, the dose, the route of exposure, the intrinsic properties of the allergen, the food matrix (e.g. lipids) and the allergen modification by food processing. Various physicochemical parameters can have an impact on the allergenicity of animal proteins. Following our previous review on how physicochemical parameters shape plant protein allergenicity, the same analysis was proceeded here for animal allergens. We found that each parameter can have variable effects, ranging on an axis from allergenicity enhancement to resolution, depending on its nature and the allergen. While glycosylation and phosphorylation are common, both are not universal traits of animal allergens. High molecular structures can favour allergenicity, but structural loss and uncovering hidden epitopes can also have a similar impact. We discovered that there are important knowledge gaps in regard to physicochemical parameters shaping protein allergenicity both from animal and plant origin, mainly because the comparability of the data is poor. Future biomolecular studies of exhaustive, standardised design together with strong validation part in the clinical context, together with data integration model systems will be needed to unravel causal relationships between physicochemical properties and the basis of protein allergenicity.
- Are physicochemical properties shaping the allergenic potency of plant allergens?Publication . Costa, Joana; Bavaro, Simona Lucia; Benede, Sara; Diaz-Perales, Araceli; Bueno-Diaz, Cristina; Gelencser, Eva; Klueber, Julia; Larre, Colette; Lozano-Ojalvo, Daniel; Lupi, Roberta; Mafra, Isabel; Mazzucchelli, Gabriel; Molina, Elena; Monaci, Linda; Martin-Pedraza, Laura; Piras, Cristian; Rodrigues, Pedro M.; Roncada, Paola; Schrama, Denise; Cirkovic-Velickovic, Tanja; Verhoeckx, Kitty; Villa, Caterina; Kuehn, Annette; Hoffmann-Sommergruber, Karin; Holzhauser, ThomasThis review searched for published evidence that could explain how different physicochemical properties impact on the allergenicity of food proteins and if their effects would follow specific patterns among distinct protein families. Owing to the amount and complexity of the collected information, this literature overview was divided in two articles, the current one dedicated to protein families of plant allergens and a second one focused on animal allergens. Our extensive analysis of the available literature revealed that physicochemical characteristics had consistent effects on protein allergenicity for allergens belonging to the same protein family. For example, protein aggregation contributes to increased allergenicity of 2S albumins, while for legumins and cereal prolamins, the same phenomenon leads to a reduction. Molecular stability, related to structural resistance to heat and proteolysis, was identified as the most common feature promoting plant protein allergenicity, although it fails to explain the potency of some unstable allergens (e.g. pollen-related food allergens). Furthermore, data on physicochemical characteristics translating into clinical effects are limited, mainly because most studies are focused on in vitro IgE binding. Clinical data assessing how these parameters affect the development and clinical manifestation of allergies is minimal, with only few reports evaluating the sensitising capacity of modified proteins (addressing different physicochemical properties) in murine allergy models. In vivo testing of modified pure proteins by SPT or DBPCFC is scarce. At this stage, a systematic approach to link the physicochemical properties with clinical plant allergenicity in real-life scenarios is still missing.
- Characterization and modulation of fish allergenicity towards the production of a low allergen farmed fishPublication . Schrama, Denise; Rodrigues, P. L.; Kuehn, Annette; Engrola, Sofia Alexandra DiasFood allergies are a common health problem worldwide, triggering an abnormal immune response. Fish belongs to the top nine of most allergenic foods, among milk, eggs, shellfish, tree nuts, peanuts, wheat, soybeans and the most recently added sesame. The continuing increase of aquaculture production and the relatively easy access to fish worldwide, contribute to increased fish consumption which result in higher prevalence of allergies. The main allergen in fish, responsible for up to 70-95% of the allergic reactions, is a small and stable calcium-binding muscle protein named parvalbumin. This thesis was focused on parvalbumin in two economically important fish species for Southern Europe aquaculture, namely gilthead seabream (Sparus aurata) and European seabass (Dicentrarchus labrax). Chapter 2 characterized this allergen, determining its structure by circular dichroism, sequencing its amino acids by mass spectrometry and analyzing its stability after fish digestion or processing. Results showed that parvalbumin represents a higher content of α-helices and some β-sheets in its secondary structure, at room temperature. Parvalbumins detection reduced throughout gastrointestinal digestion, and also several processing techniques, like salting, steaming and autoclaving showed a significant reduction (p<0.05) in parvalbumins detectability. In Chapter 3, a questionnaire conducted in Portugal was performed to evaluate consumers’ willingness to pay for low allergenic fish. Results showed that not only half the consumers were willing to pay extra, but also suggested that this was explained by the presence of fish allergies in the family and by the fish unique characteristics and quality. For the modulation of fish allergenicity Chapters 4.1, 4.2 and 4.3 analyzed this possibility by the supplementation of fish diets with additives like creatine and ethylenediamine tetraacetic acid (EDTA). Results showed a 50% reduction in fish-allergic serum Immunoglobulin-E (IgE)- reactivity when 3% EDTA was supplemented in gilthead seabreams diet. This promising result showed the possibility to modulate parvalbumin in order to decrease its allergenicity.
- Data on European seabass fed with methionine-enriched diets obtained through label free shotgun proteomicsPublication . Farinha, Ana Paula; Schrama, Denise; Silva, Tomé; Conceição, Luís E.C.; Colen, R.; Engrola, Sofia; Rodrigues, Pedro; Cerqueira, MarcoThis data article is associated with the research article "Evaluating the impact of methionine-enriched diets in the liver of European seabass through label-free shotgun proteomics". Here it is described the data obtained from proteomic analysis of 36 European seabass juveniles (3 fish x 3 replicate tanks) after 18 days of feeding with experimental diets containing four inclusion levels of methionine (Met): 0.77%, 1%, 1.36% and 1.66% Met (w/w). We analysed this dataset and compared it with that obtained during the long-term feeding period i.e., 85 days. Fish liver proteins were digested with trypsin and purified peptides were analysed by LC-MS/MS. Proteins were identified with at least two peptides at 0.1% Decoy false discovery rate (FDR). In this dataset, we present the analysis of the differential abundant proteins (DAP) with significant differences across treatments after 18 days of feeding (One-Way ANOVA, p < 0.05). Treatment's comparisons were also performed between the 18- and 85-days feeding trials through Two-Way ANOVA (p < 0.05). MS/MS raw data are available via ProteomeXChange with identifiers PXD019610 and 10.6019/PXD019610 (18-days dataset); and PXD019622 and 10.6019/PXD019622 (85-days dataset). This dataset corresponds to fish sampled after 18-days of experimental trial and is made available to support the study conducted in the afore-mentioned article, by performing the analysis during a short-term period of feeding. The data presented may be further used in other nutritional studies e.g., addressing hepatic changes mediated by Met.
- Dietary creatine supplementation in gilthead seabream (Sparus aurata) increases dorsal muscle area and the expression of myod1 and capn1 genesPublication . Ramos-Pinto, Lourenço; Lopes, Graciliana; Sousa, Vera; Castro, L. Filipe C.; Schrama, Denise; Rodrigues, Pedro; Valente, Luísa M. P.Creatine (Cr) is an amino acid derivative with an important role in the cell as energy buffer that has been largely used as dietary supplement to increase muscle strength and lean body mass in healthy individuals and athletes. However, studies in fish are scarce. The aim of this work is to determine whether dietary Cr supplementation affects muscle growth in gilthead seabream (Sparus aurata) juveniles. Fish were fed ad libitum for 69 days with diets containing three increasing levels of creatine monohydrate (2, 5, and 8%) that were compared with a non-supplemented control (CTRL) diet. At the end of the trial, the fast-twist skeletal muscle growth dynamics (muscle cellularity) and the expression of muscle-related genes were evaluated. There was a general trend for Cr-fed fish to be larger and longer than those fed the CTRL, but no significant differences in daily growth index (DGI) were registered among dietary treatments. The dorsal cross-sectional muscle area (DMA) of fish fed Cr 5 and Cr 8% was significantly larger than that of fish fed CTRL. The groups supplemented with Cr systematically had a higher relative number of both small-sized (<= 20m mu) and large-sized fibers (>= 20)mu m). Dorsal total fibers number was highest in fish fed 5% Cr. In fish supplemented with 5% Cr, the relative expression of myogenic differentiation 1 (myod1) increased almost four times compared to those fed the CTRL diet. The relative expression of calpain 3 (capn3) was highest in fish fed diets with 2% Cr supplementation, but did not differ significantly from those fed the CTRL or Cr 5%. The myod1 gene expression had a positive and significant correlation with that of capn1, capnsla, and capn3 expression. These results suggest that the observed modulation of gene expression was not enough to produce a significant alteration in muscle phenotype under the tested conditions, as a non-significant increase in muscle fiber diameter and higher total number of fiber was observed, but still resulted in increased DMA. Additional studies may be required in order to better clarify the effect of dietary Cr supplementation in fish, possibly in conjunction with induced resistance training.
- Dietary creatine supplementation in gilthead seabream (Sparus aurata): comparative proteomics analysis on fish allergens, muscle quality, and liverPublication . Schrama, Denise; Cerqueira, Marco; Raposo de Magalhães, Cláudia; Rosa Da Costa, Ana; Wulff, Tune; Gonçalves, Amparo; Camacho, Carolina; Colen, R.; Fonseca, Flávio; Rodrigues, PedroThe quality of fish flesh depends on the skeletal muscle's energetic state and delaying energy depletion through diets supplementation could contribute to the preservation of muscle's quality traits and modulation of fish allergens. Food allergies represent a serious public health problem worldwide with fish being one of the top eight more allergenic foods. Parvalbumins, have been identified as the main fish allergen. In this study, we attempted to produce a low allergenic farmed fish with improved muscle quality in controlled artificial conditions by supplementing a commercial fish diet with different creatine percentages. The supplementation of fish diets with specific nutrients, aimed at reducing the expression of parvalbumin, can be considered of higher interest and beneficial in terms of food safety and human health. The effects of these supplemented diets on fish growth, physiological stress, fish muscle status, and parvalbumin modulation were investigated. Data from zootechnical parameters were used to evaluate fish growth, food conversion ratios and hepatosomatic index. Physiological stress responses were assessed by measuring cortisol releases and muscle quality analyzed by rigor mortis and pH. Parvalbumin, creatine, and glycogen concentrations in muscle were also determined. Comparative proteomics was used to look into changes in muscle and liver tissues at protein level. Our results suggest that the supplementation of commercial fish diets with creatine does not affect farmed fish productivity parameters, or either muscle quality. Additionally, the effect of higher concentrations of creatine supplementation revealed a minor influence in fish physiological welfare. Differences at the proteome level were detected among fish fed with different diets. Differential muscle proteins expression was identified as tropomyosins, beta enolase, and creatine kinase among others, whether in liver several proteins involved in the immune system, cellular processes, stress, and inflammation response were modulated. Regarding parvalbumin modulation, the tested creatine percentages added to the commercial diet had also no effect in the expression of this protein. The use of proteomics tools showed to be sensitive to infer about changes of the underlying molecular mechanisms regarding fish responses to external stimulus, providing a holistic and unbiased view on fish allergens and muscle quality.
- EAACI molecular allergology user's guide 2.0Publication . Dramburg, Stephanie; Hilger, Christiane; Santos, Alexandra F.; de las Vecillas, Leticia; Aalberse, Rob C.; Acevedo, Nathalie; Aglas, Lorenz; Altmann, Friedrich; Arruda, Karla L.; Asero, Riccardo; Ballmer‐Weber, Barbara; Barber, Domingo; Beyer, Kirsten; Biedermann, Tilo; Bilo, Maria Beatrice; Blank, Simon; Bosshard, Philipp P.; Breiteneder, Heimo; Brough, Helen A.; Bublin, Merima; Campbell, Dianne; Caraballo, Luis; Caubet, Jean Christoph; Celi, Giorgio; Chapman, Martin D.; Chruszcz, Maksymilian; Custovic, Adnan; Czolk, Rebecca; Davies, Janet; Douladiris, Nikolaos; Eberlein, Bernadette; Ebisawa, Motohiro; Ehlers, Anna; Eigenmann, Philippe; Gadermaier, Gabriele; Giovannini, Mattia; Gomez, Francisca; Grohman, Rebecca; Guillet, Carole; Hafner, Christine; Hamilton, Robert G.; Hauser, Michael; Hawranek, Thomas; Hoffmann, Hans Jürgen; Holzhauser, Thomas; Iizuka, Tomona; Jacquet, Alain; Jakob, Thilo; Janssen‐Weets, Bente; Jappe, Uta; Jutel, Marek; Kalic, Tanja; Kamath, Sandip; Kespohl, Sabine; Kleine‐Tebbe, Jörg; Knol, Edward; Knulst, André; Konradsen, Jon R.; Korošec, Peter; Kuehn, Annette; Lack, Gideon; Le, Thuy‐My; Lopata, Andreas; Luengo, Olga; Mäkelä, Mika; Marra, Alessandro Maria; Mills, Clare; Morisset, Martine; Muraro, Antonella; Nowak‐Wegrzyn, Anna; Nugraha, Roni; Ollert, Markus; Palosuo, Kati; Pastorello, Elide Anna; Patil, Sarita Ulhas; Platts‐Mills, Thomas; Pomés, Anna; Poncet, Pascal; Potapova, Ekaterina; Poulsen, Lars K.; Radauer, Christian; Radulovic, Suzana; Raulf, Monika; Rougé, Pierre; Sastre, Joaquin; Sato, Sakura; Scala, Enrico; Schmid, Johannes M.; Schmid‐Grendelmeier, Peter; Schrama, Denise; Sénéchal, Hélène; Traidl‐Hoffmann, Claudia; Valverde‐Monge, Marcela; van Hage, Marianne; van Ree, Ronald; Verhoeckx, Kitty; Vieths, Stefan; Wickman, Magnus; Zakzuk, Josefina; Matricardi, Paolo M.; Hoffmann‐Sommergruber, KarinSince the discovery of immunoglobulin E (IgE) as a mediator of allergic diseases in 1967, our knowledge about the immunological mechanisms of IgE-mediated allergies has remarkably increased. In addition to understanding the immune response and clinical symptoms, allergy diagnosis and management depend strongly on the precise identification of the elicitors of the IgE-mediated allergic reaction. In the past four decades, innovations in bioscience and technology have facilitated the identification and production of well-defined, highly pure molecules for component-resolved diagnosis (CRD), allowing a personalized diagnosis and management of the allergic disease for individual patients. The first edition of the "EAACI Molecular Allergology User's Guide" (MAUG) in 2016 rapidly became a key reference for clinicians, scientists, and interested readers with a background in allergology, immunology, biology, and medicine. Nevertheless, the field of molecular allergology is moving fast, and after 6 years, a new EAACI Taskforce was established to provide an updated document. The Molecular Allergology User's Guide 2.0 summarizes state-of-the-art information on allergen molecules, their clinical relevance, and their application in diagnostic algorithms for clinical practice. It is designed for both, clinicians and scientists, guiding health care professionals through the overwhelming list of different allergen molecules available for testing. Further, it provides diagnostic algorithms on the clinical relevance of allergenic molecules and gives an overview of their biology, the basic mechanisms of test formats, and the application of tests to measure allergen exposure.
- «
- 1 (current)
- 2
- 3
- »