Browsing by Author "Shaw, Blanka"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Geographical range in liverworts: does sex really matter?Publication . Laenen, Benjamin; Machac, Antonin; Gradstein, S. Robbert; Shaw, Blanka; Patino, Jairo; Desamore, Aurelie; Goffinet, B.; Cox, C. J.; Shaw, Jonathan; Vanderpoorten, AlainAimWhy some species exhibit larger geographical ranges than others remains a fundamental, but largely unanswered, question in ecology and biogeography. In plants, a relationship between range size and mating system was proposed over a century ago and subsequently formalized in Baker's Law. Here, we take advantage of the extensive variation in sexual systems of liverworts to test the hypothesis that dioecious species compensate for limited fertilization by producing vegetative propagules more commonly than monoecious species. As spores are assumed to contribute to random long-distance dispersal, whereas vegetative propagules contribute to colony maintenance and frequent short-distance dispersal, we further test the hypothesis that monoecious species exhibit larger geographical ranges than dioecious ones.LocationWorldwide.MethodsWe used comparative phylogenetic methods to assess the correlation between range size and life history traits related to dispersal, including mating systems, spore size and production of specialized vegetative propagules.ResultsNo significant correlation was found between dioecy and production of vegetative propagules. However, production of vegetative propagules is correlated with the size of geographical ranges across the liverwort tree of life, whereas sexuality and spores size are not. Moreover, variation in sexual systems did not have an influence on the correlation between geographical range and production of asexual propagules.Main conclusionsOur results challenge the long-held notion that spores, and not vegetative propagules, are involved in long-distance dispersal. Asexual reproduction seems to play a major role in shaping the global distribution patterns of liverworts, so that monoecious species do not tend to display, on average, broader distribution ranges than dioecious ones. Our results call for further investigation on the spatial genetic structure of bryophyte populations at different geographical scales depending on their mating systems to assess the dispersal capacities of spores and asexual propagules and determine their contribution in shaping species distribution ranges.
- Increased diversification rates follow shifts to bisexuality in liverwortsPublication . Laenen, Benjamin; Machac, Antonin; Gradstein, S. Robbert; Shaw, Blanka; Patino, Jairo; Desamore, Aurelie; Goffinet, B.; Cox, C. J.; Shaw, A. Jonathan; Vanderpoorten, AlainShifts in sexual systems are one of the key drivers of species diversification. In contrast to angiosperms, unisexuality prevails in bryophytes. Here, we test the hypotheses that bisexuality evolved from an ancestral unisexual condition and is a key innovation in liverworts. We investigate whether shifts in sexual systems influence diversification using hidden state speciation and extinction analysis (HiSSE). This new method compares the effects of the variable of interest to the best-fitting latent variable, yielding robust and conservative tests. We find that the transitions in sexual systems are significantly biased toward unisexuality, even though bisexuality is coupled with increased diversification. Sexual systems are strongly conserved deep within the liverwort tree but become much more labile toward the present. Bisexuality appears to be a key innovation in liverworts. Its effects on diversification are presumably mediated by the interplay of high fertilization rates, massive spore production and long-distance dispersal, which may separately or together have facilitated liverwort speciation, suppressed their extinction, or both. Importantly, shifts in liverwort sexual systems have the opposite effect when compared to angiosperms, leading to contrasting diversification patterns between the two groups. The high prevalence of unisexuality among liverworts suggests, however, a strong selection for sexual dimorphism.
- Organellar phylogenomics of an emerging model system: Sphagnum (peatmoss)Publication . Shaw, A. Jonathan; Devos, Nicolas; Liu, Yang; Cox, C. J.; Goffinet, B.; Flatberg, Kjell Ivar; Shaw, BlankaBackground and Aims Sphagnum-dominated peatlands contain approx. 30 % of the terrestrial carbon pool in the form of partially decomposed plant material (peat), and, as a consequence, Sphagnum is currently a focus of studies on biogeochemistry and control of global climate. Sphagnum species differ in ecologically important traits that scale up to impact ecosystem function, and sequencing of the genome from selected Sphagnum species is currently under-way. As an emerging model system, these resources for Sphagnum will facilitate linking nucleotide variation to plant functional traits, and through those traits to ecosystem processes. A solid phylogenetic framework for Sphagnum is crucial to comparative analyses of species-specific traits, but relationships among major clades within Sphagnum have been recalcitrant to resolution because the genus underwent a rapid radiation. Herein a well-supported hypothesis for phylogenetic relationships among major clades within Sphagnum based on organellar genome sequences (plastid, mitochondrial) is provided.Methods We obtained nucleotide sequences (273 753 nucleotides in total) from the two organellar genomes from 38 species (including three outgroups). Phylogenetic analyses were conducted using a variety of methods applied to nucleotide and amino acid sequences. The Sphagnum phylogeny was rooted with sequences from the related Sphagnopsida genera, Eosphagnum and Flatbergium.Key Results Phylogenetic analyses of the data converge on the following subgeneric relationships: (Rigida (((Subsecunda) (Cuspidata)) ((Sphagnum) (Acutifolia))). All relationships were strongly supported. Species in the two major clades (i.e. Subsecunda + Cuspidata and Sphagnum + Acutifolia), which include > 90 % of all Sphagnum species, differ in ecological niches and these differences correlate with other functional traits that impact biogeochemical cycling. Mitochondrial intron presence/absence are variable among species and genera of the Sphagnopsida. Two new nomenclatural combinations are made, in the genera Eosphagnum and Flatbergium.Conclusions Newly resolved relationships now permit phylogenetic analyses of morphological, biochemical and ecological traits among Sphagnum species. The results clarify long-standing disagreements about subgeneric relationships and intrageneric classification.