Browsing by Author "Sierro, F. J."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Control mechanisms of primary productivity revealed by Calcareous Nannoplankton from marine isotope stages 12 to 9 at the Shackleton Site (IODP Site U1385)Publication . González‐Lanchas, A.; Flores, J.‐A.; Sierro, F. J.; Sánchez Goñi, M. F.; Rodrigues, Teresa; Ausín, B.; Oliveira, Dulce; Naughton, F.; Marino, M.; Maiorano, P.; Balestra, B.Nowadays, primary productivity variations at the SW Iberian Margin (IbM) are primarily controlled by wind-driven upwelling. Thus, major changes in atmospheric circulation and wind regimes between the Marine Isotope Stages (MIS) 12 and 9 could have driven substantial changes in phytoplankton productivity which remains poorly understood. We present a high-resolution calcareous nannofossil record from the Shackleton Site Integrated Ocean Discovery Program Site U1385 that allow the assessment of primary productivity and changing surface conditions on orbital and suborbital timescales over the SW IbM. These records are directly compared and integrated with terrestrial – Mediterranean forest pollen – and marine – benthic and planktic oxygen stable isotopes (δ18O), alkenone concentration [C37], Uk´37-Sea Surface Temperature and % C37:4 – proxy records from Site U1385. Our results indicate intra-interglacial increase in primary productivity together with intensification of the Azores anticyclonic high-pressure cell beyond the summer that suggests a two-phase upwelling behavior during the full interglacial MIS 11c (420–397ka), potentially drived by atmospheric NAO-like variability. Primary productivity is largely enhanced during the inception of glacial MIS 10 and the early MIS 10 (392–356ka), linked to intensified upwelling and associated processes during a period of strengthened atmospheric circulation. In agreement with the conditions observed during Heinrich events of the last glacial cycle, primary productivity reductions during abrupt cold episodes, including the Heinrich-type (Ht) events 4 to 1 (436, 392, 384 and 339ka) and the Terminations V and IV, seems to be the result of halocline formation induced by meltwater arrival, reducing the regional upward nutrient transference
- Limited variability in the phytoplankton Emiliania huxleyi since the pre-industrial era in the Subantarctic Southern OceanPublication . Rigual-Hernández, A. S.; Sánchez-Santos, J. M.; Eriksen, R.; Moy, A. D.; Sierro, F. J.; Flores, J. A.; Abrantes, Fatima; Bostock, H.; Nodder, S. D.; González-Lanchas, A.; Trull, T. W.The Southern Ocean is warming faster than the average global ocean and is particularly vulnerable to ocean acidification due to its low temperatures and moderate alkalinity. Coccolithophores are the most productive calcifying phytoplankton and an important component of Southern Ocean ecosystems. Laboratory observations on the most abundant coccolithophore, Emiliania huxleyi, suggest that this species is susceptible to variations in seawater carbonate chemistry, with consequent impacts in the carbon cycle. Whether anthropogenic environmental change during the industrial era has modified coccolithophore populations in the Southern Ocean, however, remains uncertain. This study analysed the coccolithophore assemblage composition and morphometric parameters of E. huxleyi coccoliths of a suite of Holocene-aged sediment samples from south of Tasmania. The analysis suggests that dissolution diminished the mass and length of E. huxleyi coccoliths in the sediments, but the thickness of the coccoliths was decoupled from dissolution allowing direct comparison of samples with different degree of preservation. The latitudinal distribution pattern of coccolith thickness mirrors the latitudinal environmental gradient in the surface layer, highlighting the importance of the geographic distribution of E. huxleyi morphotypes on the control of coccolith morphometrics. Additionally, comparison of the E. huxleyi coccolith assemblages in the sediments with those of annual subantarctic sediment trap records found that modern E. huxleyi coccoliths are 2% thinner than those from the pre-industrial era. The subtle variation in coccolith thickness contrasts sharply with earlier work that documented a pronounced reduction in shell calcification and consequent shell-weight decrease of 30-35% on the planktonic foraminifera Globigerina bulloides induced by ocean acidification. Results of this study underscore the varying sensitivity of different marine calcifying plankton groups to ongoing environmental change.
