Browsing by Author "Silva, Ana Cristina"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- Cerberus is a feedback inhibitor of Nodal asymmetric signaling in the chick embryoPublication . Tavares, Ana Teresa; Andrade, Sofia; Silva, Ana Cristina; Belo, José A.The TGF-beta-related molecule Nodal plays an essential and conserved role in left-right patterning of the vertebrate embryo. Previous reports have shown that the zebrafish and mouse Cerberus-related proteins Charon and Cerberus-like-2 (Cerl-2), respectively, act in the node region to prevent the Nodal signal from crossing to the right side, whereas chick Cerberus (cCer) has an unclear function in the left-side mesoderm. In this study, we investigate the transcriptional regulation and function of cCer in left-right development. By analyzing the enhancer activity of cCer 5' genomic sequences in electroporated chick embryos, we identified a cCer left-side enhancer that contains two FoxH1 and one SMAD binding site. We show that these Nodal-responsive elements are necessary and sufficient for the activation of transcription in the left-side mesoderm. In transgenic mouse embryos, cCer regulatory sequences behave as in chick embryos, suggesting that the cis-regulatory sequences of Cerberus-related genes have diverged during vertebrate evolution. Moreover, our findings from cCer overexpression and knockdown experiments indicate that cCer is a negative-feedback regulator of Nodal asymmetric signaling. We propose that cCer and mouse Cerl-2 have evolved distinct regulatory mechanisms but retained a conserved function in left-right development, which is to restrict Nodal activity to the left side of the embryo.
- Comparative expression of mouse and chicken shisa homologues during early developmentPublication . Filipe, Mario; Gonçalves Dias da Silva, Lisa; Bento, Margaret; Silva, Ana Cristina; Belo, José A.During vertebrate embryogenesis, fibroblast growth factor (FGF) and Wnt signaling have been implicated in diverse cellular processes, including cell growth, differentiation, and tissue patterning. The recently identified Xenopus Shisa protein promotes head formation by inhibiting Wnt and FGF signaling through its interaction with the immature forms of Frizzled and FGF receptors in the endoplasmic reticulum, which prevents their posttranslational maturation. Here, we describe the mouse and chicken homologues of Xenopus Shisa. The mouse and chicken Shisa proteins share, respectively, 33.6% and 33.8% identity with the Xenopus homolog. In situ hybridization analysis shows that mouse shisa is expressed throughout embryonic development, predominantly in the anterior visceral endoderm, headfolds, somites, forebrain, optic vesicle, and limb buds. Cross-species comparison shows that the expression pattern of cshisa closely mirrors that of mshisa. Our observations indicate that the Shisa family genes are typically expressed in tissues known to require the modulation of Wnt and FGF signaling. Developmental Dynamics 235:2567-2573, 2006. (c) 2006 Wiley-Liss, Inc.
- Endogenous Cerberus activity is required for anterior head specification in XenopusPublication . Silva, Ana Cristina; Filipe, Mário; Kuerner, Klaus-Michael; Steinbeisser, Herbert; Belo, José A.We analyzed the endogenous requirement for Cerberus in Xenopus head development. 'Knockdown' of Cerberus function by antisense morpholino oligonucleotides did not impair head formation in the embryo. In contrast, targeted increase of BMP, Nodal and Wnt signaling in the anterior dorsal-endoderm (ADE) resulted in synergistic loss of anterior head structures, without affecting more posterior axial ones. Remarkably, those head phenotypes were aggravated by simultaneous depletion of Cerberus. These experiments demonstrated for the first time that endogenous Cerberus protein can inhibit BMP, Nodal and Wnt factors in vivo. Conjugates of dorsal ectoderm (DE) and ADE explants in which Cerberus function was 'knocked down' revealed the requirement of Cerberus in the ADE for the proper induction of anterior neural markers and repression of more posterior ones. This data supports the view that Cerberus function is required in the leading edge of the ADE for correct induction and patterning of the neuroectoderm.
- The activity of the Nodal antagonist Cerl-2 in the mouse node is required for correct L/R body axisPublication . Marques, Sara; Borges, Ana; Silva, Ana Cristina; Freitas, Sandra; Cordenonsi, M.; Belo, José A.Correct establishment of the left/right (L/R) body asymmetry in the mouse embryo requires asymmetric activation of the evolutionarily conserved Nodal signaling cascade in the left lateral plate mesoderm (L-LPM). Furthermore, the presence of Nodal in the node is essential for its own expression in the L-LPM. Here, we have characterized the function of cerl-2, a novel Nodal antagonist, which displays a unique asymmetric expression on the right side of the mouse node. cerl-2 knockout mice display multiple laterality defects including randomization of the L/R axis. These defects can be partially rescued by removing one nodal allele. Our results demonstrate that Cerl-2 plays a key role in restricting the Nodal signaling pathway toward the left side of the mouse embryo by preventing its activity in the right side.
- Xenopus Pkdcc1 and Pkdcc2 Are Two New Tyrosine Kinases Involved in the Regulation of JNK Dependent Wnt/PCP Signaling PathwayPublication . Vitorino, Marta; Silva, Ana Cristina; Inacio, Jose Manuel; Ramalho, Jose Silva; Gur, Michal; Fainsod, Abraham; Steinbeisser, Herbert; Belo, José A.Protein Kinase Domain Containing, Cytoplasmic (PKDCC) is a protein kinase which has been implicated in longitudinal bone growth through regulation of chondrocytes formation. Nevertheless, the mechanism by which this occurs remains unknown. Here, we identified two new members of the PKDCC family, Pkdcc1 and Pkdcc2 from Xenopus laevis. Interestingly, our knockdown experiments revealed that these two proteins are both involved on blastopore and neural tube closure during gastrula and neurula stages, respectively. In vertebrates, tissue polarity and cell movement observed during gastrulation and neural tube closure are controlled by Wnt/Planar Cell Polarity (PCP) molecular pathway. Our results showed that Pkdcc1 and Pkdcc2 promote the recruitment of Dvl to the plasma membrane. But surprisingly, they revealed different roles in the induction of a luciferase reporter under the control of Atf2 promoter. While Pkdcc1 induces Atf2 expression, Pkdcc2 does not, and furthermore inhibits its normal induction by Wnt11 and Wnt5a. Altogether our data show, for the first time, that members of the PKDCC family are involved in the regulation of JNK dependent Wnt/PCP signaling pathway.