Browsing by Author "Spilmont, Nicolas"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Microplastic leachates disrupt the chemotactic and chemokinetic behaviours of an ecosystem engineer (Mytilus edulis)Publication . Uguen, Marine; Nicastro, Katy; Zardi, Gerardo I.; Gaudron, Sylvie M.; Spilmont, Nicolas; Akoueson, Fleurine; Duflos, Guillaume; Seuront, LaurentThe massive contamination of the environment by plastics is an increasing global scientific and societal concern. Knowing whether and how these pollutants affect the behaviour of keystone species is essential to identify environmental risks effectively. Here, we focus on the effect of plastic leachates on the behavioural response of the common blue mussel Mytilus edulis, an ecosystem engineer responsible for the creation of biogenic structures that modify the environment and provide numerous ecosystem functions and services. Specifically, we assess the effect of virgin polypropylene beads on mussels' chemotactic (i.e. a directional movement in response to a chemical stimulus) and chemokinetic (i.e. a non-directional change in movement properties such as speed, distance travelled or turning frequency in response to a chemical stimulus) responses to different chemical cues (i.e. conspecifics, injured conspecifics and a predator, the crab Hemigrapsus sanguineus). In the presence of predator cues, individual mussels reduced both their gross distance and speed, changes interpreted here as an avoidance behaviour. When exposed to polypropylene leachates, mussels moved less compared to control conditions, regardless of the cues tested. Additionally, in presence of crab cues with plastic leachates, mussels significantly changed the direction of movement suggesting a leachate-induced loss of their negative chemotaxis response. Taken together, our results indicate that the behavioural response of M. edulis is cue-specific and that its anti-predator behaviour as well as its mobility are impaired when exposed to microplastic leachates, potentially affecting the functioning of the ecosystem that the species supports.
- Symbiotic endolithic microbes reduce host vulnerability to an unprecedented heatwavePublication . Zardi, Gerardo; Monsinjon, Jonathan R.; Seuront, Laurent; Spilmont, Nicolas; McQuaid, Christopher D.; Nicastro, KatyHeatwaves are increasingly severe and frequent, posing significant threats to ecosystems and human well-being. Characterised by high thermal variability, intertidal communities are particularly vulnerable to heat stress. Microbial endolithic communities that are found in marine calcifying organisms have been shown to induce shell erosion that alters shell surface colour, lowering body temperatures and increasing survival rates. Here, we investigate how the symbiotic relationship between endolithic microbes and the blue intertidal mussel Mytilus edulis mitigates thermal stress during the unprecedented 2022 atmospheric heatwave in the English Channel. Microbial infestation of the shell significantly enhanced mussel survival, particularly higher on the shore where thermal stress was greater. Using data from biomimetic temperature loggers, we predicted the expected thermal buffer and observed differences up to 3.2 °C between individuals with and without symbionts under the known conditions of the heat wave-induced mortality event. The ecological implications extend beyond individual mussels, affecting the reef-building capacity of mussels, with potential cascading effects for local biodiversity, carbon sequestration, and coastal defence. These findings emphasize the importance of understanding small-scale biotic interactions during extreme climate events and provide insights into the dynamic nature of the endolith-mussel symbiosis along a parasitic-mutualistic continuum influenced by abiotic factors.
- A whale of a plastic tale: A plea for interdisciplinary studies to tackle micro- and nanoplastic pollution in the marine realmPublication . Seuront, Laurent; Zardi, Gerardo I.; Uguen, Marine; Bouchet, Vincent M.P.; Delaeter, Camille; Henry, Solène; Spilmont, Nicolas; Nicastro, KatyPlastic is one of the most ubiquitous sources of both contamination and pollution of the Anthropocene, and accumulates virtually everywhere on the planet. As such, plastic threatens the environment, the economy and human well-being globally. The related potential threats have been identified as a major global conservation issue and a key research priority. Asa consequence, plastic pollution has become one of the most prolific fields of research in research areas including chemistry, physics, oceanography, biology, ecology, ecotoxicology, molecular biology, sociology, economy, conservation, management, and even politics. In this context, one may legitimately expect plastic pollution research to be highly interdisciplinary. However, using the emerging topic of microplastic and nanoplastic leachate (i.e., the desorption of molecules that are adsorbed onto the surface of a polymer and/or absorbed into the polymer matrix in the absence of plastic ingestion) in the ocean as a case study, we argue that this is still far from being the case. Instead, we highlight that plastic pollution research rather seems to remain structured in mostly isolated monodisciplinary studies. A plethora of analytical methods arc now available to qualify and quantify plastic monomers, polymers and the related additives. We nevertheless show though a survey of the literature that most studies addressing the effects of leachates on marine organisms essentially still lack of a quantitative assessment of the chemical nature and content of both plastic items and their leachates. In the context of the ever-increasing research effort devoted to assess the biological and ecological effects of plastic waste, we subsequently argue that the lack of a true interdisciplinary approach is likely to hamper the development of this research field. We finally introduce a roadmap for future research which has to evolve through the development of a sound and systematic ability to chemically define what we biologically compare.