Browsing by Author "Tavares, Alexandra"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Biallelic BUB1 mutations cause microcephaly, developmental delay, and variable effects on cohesion and chromosome segregationPublication . Carvalhal, Sara; Bader, Ingrid; Rooimans, Martin A.; Oostra, Anneke B.; Balk, Jesper A.; Feichtinger, René G.; Beichler, Christine; Speicher, Michael R.; van Hagen, Johanna M.; Waisfisz, Quinten; van Haelst, Mieke; Bruijn, Martijn; Tavares, Alexandra; Mayr, Johannes A.; Wolthuis, Rob M. F.; Oliveira, Raquel A.; de Lange, JobBudding uninhibited by benzimidazoles (BUB1) contributes to multiple mitotic processes. Here, we describe the first two patients with biallelic BUB1 germline mutations, who both display microcephaly, intellectual disability, and several patient-specific features. The identified mutations cause variable degrees of reduced total protein level and kinase activity, leading to distinct mitotic defects. Both patients' cells show prolonged mitosis duration, chromosome segregation errors, and an overall functional spindle assembly checkpoint. However, while BUB1 levels mostly affect BUBR1 kinetochore recruitment, impaired kinase activity prohibits centromeric recruitment of Aurora B, SGO1, and TOP2A, correlating with anaphase bridges, aneuploidy, and defective sister chromatid cohesion. We do not observe accelerated cohesion fatigue. We hypothesize that unresolved DNA catenanes increase cohesion strength, with concomitant increase in anaphase bridges. In conclusion, BUB1 mutations cause a neurodevelopmental disorder, with clinical and cellular phenotypes that partially resemble previously described syndromes, including autosomal recessive primary microcephaly, mosaic variegated aneuploidy, and cohesinopathies.
- A dual‐function SNF2 protein drives chromatid resolution and nascent transcripts removal in mitosisPublication . Carmo, Catarina; Coelho, João; Silva, Rui; Tavares, Alexandra; Boavida, Ana; Gaetani, Paola; Guilgur, Leonardo G; Martinho, Rui Goncalo; Oliveira, Raquel AMitotic chromatin is largely assumed incompatible with transcription due to changes in the transcription machinery and chromosome architecture. However, the mechanisms of mitotic transcriptional inactivation and their interplay with chromosome assembly remain largely unknown. By monitoring ongoing transcription in Drosophila early embryos, we reveal that eviction of nascent mRNAs from mitotic chromatin occurs after substantial chromosome compaction and is not promoted by condensin I. Instead, we show that the timely removal of transcripts from mitotic chromatin is driven by the SNF2 helicase-like protein Lodestar (Lds), identified here as a modulator of sister chromatid cohesion defects. In addition to the eviction of nascent transcripts, we uncover that Lds cooperates with Topoisomerase 2 to ensure efficient sister chromatid resolution and mitotic fidelity. We conclude that the removal of nascent transcripts upon mitotic entry is not a passive consequence of cell cycle progression and/or chromosome compaction but occurs via dedicated mechanisms with functional parallelisms to sister chromatid resolution.
- Mob1: defining cell polarity for proper cell divisionPublication . Tavares, Alexandra; Gonçalves, João; Florindo, Claudia; Tavares, Alvaro A.; Soares, HelenaMob1 is a component of both the mitotic exit network and Hippo pathway, being required for cytokinesis, control of cell proliferation and apoptosis. Cell division accuracy is crucial in maintaining cell ploidy and genomic stability and relies on the correct establishment of the cell division axis, which is under the control of the cell's environment and its intrinsic polarity. The ciliate Tetrahymena thermophila possesses a permanent anterior posterior axis, left right asymmetry and divides symmetrically. These unique features of Tetrahymena prompted us to investigate the role of Tetrahymena Mob1. Unexpectedly, we found that Mob1 accumulated in basal bodies at the posterior pole of the cell, and is the first molecular polarity marker so far described in Tetrahymena. In addition, Mob1 depletion caused the abnormal establishment of the cell division plane, providing clear evidence that Mob1 is important for its definition. Furthermore, cytokinesis was arrested and ciliogenesis delayed in Tetrahymena cells depleted of Mob1. This is the first evidence for an involvement of Mob1 in cilia biology. In conclusion, we show that Mob1 is an important cell polarity marker that is crucial for correct division plane placement, for cytokinesis completion and for normal cilia growth rates.