Browsing by Author "Tocher, Douglas R."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Comparative study on fatty acid metabolism of early stages of two crustacean species: Artemia sp. metanauplii and Grapsus adscensionis zoeae, as live prey for marine animalsPublication . Reis, Diana; Acosta, Nieves G.; Almansa, Eduardo; Navarro, Juan C.; Tocher, Douglas R.; Andrade, José Pedro; Sykes, António V.; Rodríguez, CovadongaThe present study compared the lipid composition and in vivo capability of Artemia sp. metanauplii (the main live prey used in aquaculture) and Grapsus adscensionis zoeae (as a wild zooplankton model) to metabolise unsaturated fatty acids. The two species were incubated in vivo with 0.3μM of individual [1-14C]fatty acids (FA) including 18:1n-9, 18:2n-6, 18:3n-3, 20:4n-6 (ARA), 20:5n-3 (EPA) and 22:6n-3 (DHA) bound to bovine serum albumin (BSA). Compared to metanauplii, zoeae contained twice the content of polar lipids (PL) and eight-fold the content of long-chain polyunsaturated fatty acids (LC-PUFA). Artemia sp. metanauplii showed increased short chain fatty acid de novo synthesis from beta-oxidation of [1-14C]LC-PUFA, preferentially DHA. Of the LC-PUFA, DHA showed the highest esterification rate into Artemia sp. triacylglycerols. In contrast, in Grapsus zoeae [1-14C]DHA displayed the highest transformation rate into longer chain-length FAs and was preferentially esterified into PL. EPA and ARA, tended to be more easily incorporated and/or retained than DHA in Artemia sp. Moreover, both EPA and ARA were preferentially esterified into Artemia PL, which theoretically would favour their bioavailability to the larvae. In addition to the inherent better nutritional value of Grapsus zoeae due to their intrinsic lipid composition, the changes taking place after the lipid incorporation, point at two distinct models of lipid metabolism that indicate zoeae as a more suitable prey than Artemia sp. for the feeding of marine animals.
- Composition and metabolism of phospholipids in Octopus vulgaris and Sepia officinalis hatchlingsPublication . Reis, Diana; Acosta, Nieves G.; Almansa, Eduardo; Tocher, Douglas R.; Andrade, Jose; Sykes, António; Rodriguez, CovadongaThe objective of the present study was to characterise the fatty acid (FA) profiles of the major phospholipids, of Octopus vulgaris and Sepia officinalis hatchlings, namely phosphatidylcholine (PC), phosphatidylserine (PS), phosphatidylinositol (PI) and phosphatidylethanolamine (PE); and to evaluate the capability of both cephalopod species on dietary phospholipid remodelling. Thus, O. vulgaris and S. officinalis hatchlings were in vivo incubated with 0.3 mu M of L-(alpha)-1-palmitoyl-2-[1-C-14]arachidonyl-PC or L-(alpha)-1-palmitoy1-2-[1-C-14]arachidonyl-PE. Octopus and cuttlefish hatchlings phospholipids showed a characteristic FA profiles with PC presenting high contents of 16:0 and 22:6n-3 (DHA); PS having high 18:0, DHA and 20:5n-3 (EPA); PI a high content of saturated FA; and PE showing high contents of DHA and EPA. Interestingly, the highest content of 20:4n-6 (ARA) was found in PE rather than PI. Irrespective of the phospholipid in which [1-C-14]ARA was initially bound (either PC or PE), the esterification pattern of [1-C-14]ARA in octopus lipids was similar to that found in their tissues with high esterification of this FA into PE. In contrast, in cuttlefish hatchlings [1-C-14]ARA was mainly recovered in the same phospholipid that was provided. These results showed a characteristic FA profiles in the major phospholipids of the two species, as well as a contrasting capability to remodel dietary phospholipids, which may suggest a difference in phospholipase activities. (C) 2016 Elsevier Inc. All rights reserved.
- Effect of varying dietary levels of LC-PUFA and vegetable oil sources on performance and fatty acids of Senegalese sole post larvae: Puzzling results suggest complete biosynthesis pathway from C18 PUFA to DHAPublication . Navarro-Guillén, Carmen; Engrola, S.; Castanheira, Maria Filipa; Bandarra, N.; Hachero-Cruzado, Ismael; Tocher, Douglas R.; Conceição, L. E. C.; Morais, S.Lipid nutrition of marine fish larvae has focused on supplying essential fatty acids (EFA) at high levels to meet requirements for survival, growth and development. However, some deleterious effects have been reported suggesting that excessive supply of EFA might result in insufficient supply of energy substrates, particularly in species with lower EFA requirements such as Senegalese sole (Solea senegalensis). This study addressed how the balance between EFA and non-EFA (better energy sources) affects larval performance, body composition and metabolism and retention of DHA, by formulating enrichment emulsions containing two different vegetable oil sources (olive oil or soybean oil) and three DHA levels. DHA positively affected growth and survival, independent of oil source, confirming that for sole post-larvae it is advantageous to base enrichments on vegetable oils supplying higher levels of energy, and supplement these with a DHA-rich oil. In addition, body DHA levels were generally comparable considering the large differences in their dietary supply, suggesting that the previously reported ∆4 fatty acyl desaturase (fad) operates in vivo and that DHA was synthesized at physiologically significant rates through a mechanism involving transcriptional up-regulation of ∆4fad, which was significantly up-regulated in the low DHA treatments. Furthermore, data suggested that DHA biosynthesis may be regulated by an interaction between dietary n − 3 and n − 6 PUFA, as well as by levels of LC-PUFA, and this may, under certain nutritional conditions, lead to DHA production from C18 precursors. The molecular basis of putative fatty acyl ∆5 and ∆6 desaturation activities remains to be fully determined as thorough searches have found only a single (∆4) Fads2-type transcript. Therefore, further studies are required but this might represent a unique activity described within vertebrate fads.
- Effects of genotype and dietary fish oil replacement with vegetable oil on the intestinal transcriptome and proteome of Atlantic salmon (Salmo salar)Publication . Silva, Tomé; Cordeiro, O.; Rodrigues, Pedro; Guy, Derrick R.; Bron, James E.; Taggart, John B.; Bell, J. Gordon; Tocher, Douglas R.Expansion of aquaculture requires alternative feeds and breeding strategies to reduce dependency on fish oil (FO) and better utilization of dietary vegetable oil (VO). Despite the central role of intestine in maintaining body homeostasis and health, its molecular response to replacement of dietary FO by VO has been little investigated. This study employed transcriptomic and proteomic analyses to study effects of dietary VO in two family groups of Atlantic salmon selected for flesh lipid content, 'Lean' or 'Fat'.ResultsMetabolism, particularly of lipid and energy, was the functional category most affected by diet. Important effects were also measured in ribosomal proteins and signalling. The long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis pathway, assessed by fatty acid composition and gene expression, was influenced by genotype. Intestinal tissue contents of docosahexaenoic acid were equivalent in Lean salmon fed either a FO or VO diet and expression of LC-PUFA biosynthesis genes was up-regulated in VO-fed fish in Fat salmon. Dietary VO increased lipogenesis in Lean fish, assessed by expression of FAS, while no effect was observed on β-oxidation although transcripts of the mitochondrial respiratory chain were down-regulated, suggesting less active energetic metabolism in fish fed VO. In contrast, dietary VO up-regulated genes and proteins involved in detoxification, antioxidant defence and apoptosis, which could be associated with higher levels of polycyclic aromatic hydrocarbons in this diet. Regarding genotype, the following pathways were identified as being differentially affected: proteasomal proteolysis, response to oxidative and cellular stress (xenobiotic and oxidant metabolism and heat shock proteins), apoptosis and structural proteins particularly associated with tissue contractile properties. Genotype effects were accentuated by dietary VO.ConclusionsIntestinal metabolism was affected by diet and genotype. Lean fish may have higher responsiveness to low dietary n-3 LC-PUFA, up-regulating the biosynthetic pathway when fed dietary VO. As global aquaculture searches for alternative oils for feeds, this study alerts to the potential of VO introducing contaminants and demonstrates the detoxifying role of intestine. Finally, data indicate genotype-specific responses in the intestinal transcriptome and proteome to dietary VO, including possibly structural properties of the intestinal layer and defence against cellular stress, with Lean fish being more susceptible to diet-induced oxidative stress.