Browsing by Author "Torrecillas, Cristina"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Deception Island 1967–1970 volcano eruptions from historical aerial frames and satellite imagery (Antarctic Peninsula)Publication . Prates, Gonçalo; Torrecillas, Cristina; Berrocoso, Manuel; Goyanes, Gabriel; Vieira, GonçaloAerial frames and satellite imagery are widely recognized data sources from which to produce maps. For volcanoes, maps enable the quantification of erupted ash and the destruction caused. The last eruptive sequence on Deception Island was endured from 1967 to 1970. Analogue maps were produced via classical photogrammetric methods with a high degree of human intervention mainly to analyse the volcanic-centres areas only. However, historical aerial frames cover the whole of Deception Island. Structure from motion photogrammetry, a near-automated compilation of digital image processing strategies, minimizes the degree of human intervention to produce orthographic mosaics and digital elevation models from digital aerial frames. Orthographic mosaics were produced from historical aerial frames of 1956 and 1968, and a Kompsat-3 image of 2020. Their shared rootmean-square deviation was 1.8 m and 1.7 m in easting and northing, respectively, at ground control points measured with phase-differential global navigation satellite systems. The digital elevation models were processed with a root-mean-square deviation of 2.3 m and 3.6 m from 1956 and 1968 aerial frames, respectively. As the first application, erupted ashfall and the subsequent destruction, mainly at the former Chilean and British bases, were identified, and the volume of erupted ash was assessed to be over 0.16 km3 within the area mapped by these new digital cartographic products.
- Evaluation and modelling of the coastal geomorphological changes of deception island since the 1970 eruption and Its involvement in research activityPublication . Torrecillas, Cristina; Zarzuelo, Carmen; de la Fuente, Jorge; Jigena-Antelo, Bismarck; Prates, GonçaloDeception Island is an active volcano with a submerged caldera open to the sea called Port Foster. Several post-caldera-collapsed volcanic events, as well as hydrodynamics, have changed its inner coastline, shaping new volcanic deposits. A hydrodynamic model is presented to predict accretion and erosion trends in this bay, which could have an impact on the mobility of researchers and tourists. New historical orthophotos and spatio-temporal differences between digital elevation and bathymetric models were used for validation purposes. The model reveals that the south-facing coast is more susceptible to erosion, while the east- or west-facing coast experiences sedimentation. A visual study for the periods 1970–2003 and 2003–2020 in Port Foster obtained similar annual erosion/accretion lineal rates (0.3–2 m/year) in the areas not affected by the last eruptive period, as well as increases of 0.023 km2/year and 0.028 km2/year of the inner bay and coastal sedimentation rates of 0.007 km2/year and 0.002 km2/year, respectively. Only part of the significant total volume loss is received within the bay, including its own erosion, and accumulates on the bay bottom. This is largely because the volume input is composed of snow, and it is also due to the transfer of material outside to balance the figures.
- Recent Macaronesian kinematics from GNSS ground displacement analysisPublication . Barbero, Ignacio; Torrecillas, Cristina; Paez, Raul; Prates, Gonçalo; Berrocoso, ManuelMacaronesia is a complex oceanic region spanning three tectonic plates in the northeast Atlantic ocean. It is composed of four archipelagos, widely distributed and limited to the east by the Iberian Peninsula and north-western coast of Africa. This study aims to clarify recent Macaronesian kinematics from 19 GNSS stations located on the four archipelagos and the Iberian and African coastlines. The analysis is based on nearly 15 years of common data acquisition and aimed to detect new effects of intraplate tectonics or similar local/regional events consistent with calculated ground displacements. Evaluating the GNSS stations residual velocities relative to those expected from the NNR-MORVEL56 model, higher residuals were found at continental coastal stations (Africa) than at oceanic ones (Canaries and Madeira). From the computed strain rate map, the possible existence of a shear zone connecting the Gloria and Transmoroccan fault systems, already mentioned by other authors, was depicted. Cluster statistical analysis of the horizontal residual velocities helped to identify tectonic boundaries in Macaronesia and four groups of analogous intraplate residual velocities within this region. Three of four groups were identified in the Azores, highlighting the African-Nubian-Eurasian diffuse plate boundary in this region. Furthermore, in the Canary Islands, two distinct kinematic behaviours were detected, possibly due to the activity along a previously detected tectonic fault between Tenerife and Gran Canaria, where some stations have similar intraplate residuals to those at Madeira and Cape Verde stations, while others have similar intraplate residuals to those of continental stations. Finally, all stations on oceanic crust, except Cape Verde, present recent ground subsidence which may be attributed to isostatic adjustment.