Percorrer por autor "Urrego, Dunia H."
A mostrar 1 - 2 de 2
Resultados por página
Opções de ordenação
- Pollen from the deep-sea: A breakthrough in the mystery of the ice agesPublication . Goni, Maria F. Sanchez; Desprat, Stephanie; Fletcher, William J.; Morales-Molino, Cesar; Naughton, Filipa; Oliveira, Dulce; Urrego, Dunia H.; Zorzi, CoraliePollen from deep-sea sedimentary sequences provides an integrated regional reconstruction of vegetation and climate (temperature, precipitation, and seasonality) on the adjacent continent. More importantly, the direct correlation of pollen, marine and ice indicators allows comparison of the atmospheric climatic changes that have affected the continent with the response of the Earth's other reservoirs, i.e., the oceans and cryosphere, without any chronological uncertainty. The study of long continuous pollen records from the European margin has revealed a changing and complex interplay between European climate, North Atlantic sea surface temperatures (SSTs), ice growth and decay, and high-and low-latitude forcing at orbital and millennial timescales. These records have shown that the amplitude of the last five terrestrial interglacials was similar above 40 degrees N, while below 40 degrees N their magnitude differed due to precession-modulated changes in seasonality and, particularly, winter precipitation. These records also showed that vegetation response was in dynamic equilibrium with rapid climate changes such as the Dangaard-Oeschger (D-O) cycles and Heinrich events, similar in magnitude and velocity to the ongoing global warming. However, the magnitude of the millennial-scale warming events of the last glacial period was regionally-specific. Precession seems to have imprinted regions below 40 degrees N while obliquity, which controls average annual temperature, probably mediated the impact of D-O warming events above 40 degrees N. A decoupling between high-and low-latitude climate was also observed within last glacial warm (Greenland interstadials) and cold phases (Greenland stadials). The synchronous response of western European vegetation/climate and eastern North Atlantic SSTs to D-O cycles was not a pervasive feature throughout the Quaternary. During periods of ice growth such as MIS 5a/4, MIS 11c/b and MIS 19c/b, repeated millennial-scale cold-air/warm-sea decoupling events occurred on the European margin superimposed to a long-term air-sea decoupling trend. Strong air-sea thermal contrasts promoted the production of water vapor that was then transported northward by the westerlies and fed ice sheets. This interaction between long-term and shorter timescale climatic variability may have amplified insolation decreases and thus explain the Ice Ages. This hypothesis should be tested by the integration of stochastic processes in Earth models of intermediate complexity.
- The ACER pollen and charcoal database: a global resource to document vegetation and fire response to abrupt climate changes during the last glacial periodPublication . Goni, Maria F. Sanchez; Desprat, Stephanie; Daniau, Anne-Laure; Bassinot, Frank C.; Polanco-Martinez, Josue M.; Harrison, Sandy P.; Allen, Judy R. M.; Anderson, R. Scott; Behling, Hermann; Bonnefille, Raymonde; Burjachs, Francesc; Carrion, Jose S.; Cheddadi, Rachid; Clark, James S.; Combourieu-Nebout, Nathalie; Mustaphi, Colin. J. Courtney; Debusk, Georg H.; Dupont, Lydie M.; Finch, Jemma M.; Fletcher, William J.; Giardini, Marco; Gonzalez, Catalina; Gosling, William D.; Grigg, Laurie D.; Grimm, Eric C.; Hayashi, Ryoma; Helmens, Karin; Heusser, Linda E.; Hill, Trevor; Hope, Geoffrey; Huntley, Brian; Igarashi, Yaeko; Irino, Tomohisa; Jacobs, Bonnie; Jimenez-Moreno, Gonzalo; Kawai, Sayuri; Kershaw, A. Peter; Kumon, Fujio; Lawson, Ian T.; Ledru, Marie-Pierre; Lezine, Anne-Marie; Liew, Ping Mei; Magri, Donatella; Marchant, Robert; Margari, Vasiliki; Mayle, Francis E.; McKenzie, G. Merna; Moss, Patrick; Mueller, Stefanie; Mueller, Ulrich C.; Naughton, Filipa; Newnham, Rewi M.; Oba, Tadamichi; Perez-Obiol, Ramon; Pini, Roberta; Ravazzi, Cesare; Roucoux, Katy H.; Rucina, Stephen M.; Scott, Louis; Takahara, Hikaru; Tzedakis, Polichronis C.; Urrego, Dunia H.; van Geel, Bas; Valencia, B. Guido; Vandergoes, Marcus J.; Vincens, Annie; Whitlock, Cathy L.; Willard, Debra A.; Yamamoto, MasanobuQuaternary records provide an opportunity to examine the nature of the vegetation and fire responses to rapid past climate changes comparable in velocity and magnitude to those expected in the 21st-century. The best documented examples of rapid climate change in the past are the warming events associated with the Dansgaard-Oeschger (D-O) cycles during the last glacial period, which were sufficiently large to have had a potential feedback through changes in albedo and greenhouse gas emissions on climate. Previous reconstructions of vegetation and fire changes during the D-O cycles used independently constructed age models, making it difficult to compare the changes between different sites and regions. Here, we present the ACER (Abrupt Climate Changes and Environmental Responses) global database, which includes 93 pollen records from the last glacial period (73-15 ka) with a temporal resolution better than 1000 years, 32 of which also provide charcoal records. A harmonized and consistent chronology based on radiometric dating (C-14, U-234/Th-230, optically stimulated luminescence (OSL), Ar-40/Ar-39-dated tephra layers) has been constructed for 86 of these records, although in some cases additional information was derived using common control points based on event stratigraphy. The ACER database compiles metadata including geospatial and dating information, pollen and charcoal counts, and pollen percentages of the characteristic biomes and is archived in Microsoft Access (TM) at https://doi. org/10.1594/PANGAEA. 870867.
