Browsing by Author "Xavier Malcata, F."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Assessment and comparison of the properties of biodiesel synthesized from three different types of wet microalgal biomassPublication . Gangadhar, Katkam N.; Pereira, Hugo; Diogo, Herminio P.; Borges dos Santos, R. M.; Devi, B. L. A. Prabhavathi; Prasad, R. B. N.; Custódio, Luísa; Xavier Malcata, F.; Varela, João; Barreira, LuísaIn recent years, microalgae-based carbon-neutral biofuels (i.e., biodiesel) have gained considerable interest due to high growth rate and higher lipid productivity of microalgae during the whole year, delivering continuous biomass production as compared to vegetable-based feedstocks. Therefore, biodiesel was synthesized from three different microalgal species, namely Tetraselmis sp. (Chlorophyta) and Nannochloropsis oculata and Phaeodactylum tricornutum (Heterokontophyta), and the fuel properties of the biodiesel were analytically determined, unlike most studies which rely on estimates based on the lipid profile of the microalgae. These include density, kinematic viscosity, total and free glycerol, and high heating value (HHV), while cetane number (CN) and cold filter plugging point (CFPP) were estimated based on the fatty acid methyl ester profile of the biodiesel samples instead of the lipid profile of the microalgae. Most biodiesel properties abide by the ASTM D6751 and the EN 14214 specifications, although none of the biodiesel samples met the minimum CN or the maximum content of polyunsaturated fatty acids with a parts per thousand yen4 double bonds as required by the EN 14214 reference value. On the other hand, bomb calorimetric experiments revealed that the heat of combustion of all samples was on the upper limit expected for biodiesel fuels, actually being close to that of petrodiesel. Post-production processing may overcome the aforementioned limitations, enabling the production of biodiesel with high HHV obtained from lipids present in these microalgae.
- Effect of temperature on growth, photosynthesis and biochemical composition of Nannochloropsis oceanica, grown outdoors in tubular photobioreactorsPublication . Carneiro, M.; Cicchi, B.; Maia, I. B.; Pereira, H.; Zittelli, G. Chini; Varela, João; Xavier Malcata, F.; Torzillo, G.Since temperature is an important factor affecting microalgal growth, photosynthetic rate and biomass composition, this study has accordingly focused on its effects on biomass yield and nighttime biomass loss, as well as photochemical changes, using Nannochloropsis oceanica as model species, grown in two outdoor 50-L tubular photobioreactors (PBR). In two independent trials, cultures were subjected to a diurnal light:dark cycle, under a constant temperature of 28 degrees C and, on the second trial, at 18 degrees C. Changes in culture performance were assessed by measuring growth, lipid and fatty acid composition of the biomass in both morning and evening. Our results revealed that N. oceanica shows a wide temperature tolerance with relevant nighttime biomass loss, that decreased at lower temperatures, at the expenses of its daily productivity. Fluorescence measurements revealed reversible damage to photosystem II in cells growing in the PBR under optimal thermal conditions, whereas microalgae grown at suboptimal ones exhibited an overall lower photosynthetic activity. Lipids were partially consumed overnight to support cell division and provide maintenance energy. Eicosapentaenoic acid (EPA) catabolism reached a maximum after the dark period, as opposed to their saturated counterparts; whereas lower temperatures led to higher EPA content which reached the maximum in the morning. These findings are relevant for the production of Nannochloropsis at industrial scale.