Browsing by Author "dos Santos, Marta"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Retraction note: TRIB2 confers resistance to anti-cancer therapy by activating the serine/threonine protein kinase AKTPublication . Hill, Richard; Madureira, Patricia; Ferreira, Bibiana; Baptista, Ines; Machado, Susana; Colaҫo, Laura; dos Santos, Marta; Liu, Ningshu; Dopazo, Ana; Ugurel, Selma; Adrienn, Angyal; Kiss-Toth, Endre; Isbilen, Murat; Gure, Ali O.; Link, WolfgangThe authors have retracted this article as it has come to their attention that several images were inappropriately processed and duplicated in multiple figures. In particular, the data were duplicated, and in some cases inverted, across several panels in Figures 2c, 2b, 3d and Supplementary Figure 5. Erroneous data were also included in Figure 2e, Supplementary Figure 1 and Supplementary Figure 8. We apologize to the scientific community for any confusion this article may have caused. Richard Hill, Patricia Madureira, Bibiana I. Ferreira, Susana Machado, Ana Dopazo, Selma Ugurel, Endre Kiss-Toth, Murat isbilen and Wolfgang Link agree with this retraction. Inês Baptista, Laura Colaço, Marta dos Santos, Ningshu Liu, Angyal Adrienn and Ali O. Gure have not responded to correspondence from the Publisher about this retraction.
- TRIB2 confers resistance to anti-cancer therapy by activating the serine/threonine protein kinase AKTPublication . Hill, Richard; Madureira, Patricia; Ferreira, Bibiana; Baptista, Inês; Machado, S.; Colaco, Laura; dos Santos, Marta; Liu, Ningshu; Dopazo, Ana; Ugurel, Selma; Adrienn, Angyal; Kiss-Toth, Endre; Isbilen, Murat; Gure, Ali O.; Link, WolfgangIntrinsic and acquired resistance to chemotherapy is the fundamental reason for treatment failure for many cancer patients. The identification of molecular mechanisms involved in drug resistance or sensitization is imperative. Here we report that tribbles homologue 2 (TRIB2) ablates forkhead box O activation and disrupts the p53/MDM2 regulatory axis, conferring resistance to various chemotherapeutics. TRIB2 suppression is exerted via direct interaction with AKT a key signalling protein in cell proliferation, survival and metabolism pathways. Ectopic or intrinsic high expression of TRIB2 induces drug resistance by promoting phospho-AKT (at Ser473) via its COP1 domain. TRIB2 expression is significantly increased in tumour tissues from patients correlating with an increased phosphorylation of AKT, FOXO3a, MDM2 and an impaired therapeutic response. This culminates in an extremely poor clinical outcome. Our study reveals a novel regulatory mechanism underlying drug resistance and suggests that TRIB2 functions as a regulatory component of the PI3K network, activating AKT in cancer cells.
